11

F/G 1273

IV _NJ DEPT OF STATISTICS K M HANSEN ET AL.

TR-294 ARD-23360. 8-MA DAALO3-B86-K-0073

5
:
£
K3
E
h &
=
2
:
| &
g
¥
F 4

ING A
NCETON

TUN
PRI
FEB 8

" RD-A191 446

A% 't%'l’hl'r’!'lﬂ'o.l'!,!’. Wit I R a2 a2 e UL L S A SR S ISR B M RN o W N AN AN KOS '::.’:;
.

[X

i

EER
lls
14
FEEEE E&_E. .l
EFEE
¢

] i]
(] " ‘B

er
[3
Fr

B e AL N,

| ’ .
HM' 2 L s

.’ \.
S | el

)
»
5

7
:o

Pl 4
o]'.—'— A

.!'
LN
AT AR

[
A7,
Py
Pl

-z
2

> A%
ﬁ:*"-l

l P Y A% 0 ‘l“
v '-"' ",;./- W ',’Q-. o ‘-’5 -."‘-s"-.r" "b“‘*‘ o ’éaﬁ‘l"}"g
.':?':: ‘::"i' '0"'!'. ", o‘. L) .#l:"‘ -.:\:: WY l".l 'n' . ‘..0‘.'.!'.‘ o l'. LN 1‘::":.:::.‘:‘0' \E“(ku'?‘o:!‘

by i

LA

L [J - - -
ﬁ":‘ . ' .:: :‘o“".‘. ":"l.q'. $~.?‘“

.ﬂe'ﬁﬁﬁ?

‘.v ‘.& “' hat, .s'..::. lt' (00X .1 "

ML NLN

I AT R I R IO RS UL LS LRk AU Wt ev wt gt e, #%. &ta 4V 832 852 V2 §% i 82 8%p 0¥p) $p Aig AT 0Te N'R 8p a0 R B PR b Bt g4 gt s
..... . . 2

- MASTER COPY - FOR REPRODUCTION PURPOSES o
DOCUMENTATION PAGE ‘;':iit‘

1
1D, RESTRICTIVE MARKINGS ;:‘:s‘;;
' 3
. fly!
3. ORTRIBUTION/ AVAILABILITY OF REPORT ;'l:;'.
i
Approved for public release; g
distribution unlimited. ety
5. MONITORING ORGANIZATION REPORT NUMBER(S) o
Gt
ARO 23360.8-MA b
6a. NAME OF PERFORMING ORGANIZATION . o':ncs svr‘:?L 7s. NAME OF MONITORING ORGANIZATION 3::'5

(i applica
P t Uni
rinceton University U. S. Army Research Office l‘;:;;
6. ADDRESS (Gity, State, and 2P Code) 7b. ADDRESS (City, State, and ZIP Code) ::.‘.::‘
P. 0. Box 12211 ;{'ﬂi
Princeton, NJ 08544 Research Triangle Park, NC 27709-2211 ":;
(302
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION of a o
U. S. Army Research Office DAALO3-86-K-0073 ::.:::
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS ;"e‘:.‘
LIS
P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNIT IO
ELEMENT NO. | NO. NO. ACCESSION NO. Wht
Research Triangle Park, NC 27709-2211 ‘
11. TITLE (nclude Security Classification) Cay
Tuning a Major Part of a Clustering Algorithm :'
0
12. PERSONAL AUTHOR(S) K
Katherine M. Hansen and John W. Tukey .g“f.!
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT

Technical FROM TO February 1988 32 i .:.:0
16. SUPPLEMENTARY NOTATION !
The view, opinions and/or findings contained in this report are those '
of 2he authar(i) and shguld not be construed as an qQfficial Department of the Army position,]
¢
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) '.\31
FIELD GROUP SUB-GROUP Clustering Algorithm, Algorithms, Clustering o
Procedures, Gaussian Samples ::."‘.
VG
19. ABSTRACT (Continue on reverse If necessary and identify by block number) ::‘0,:'
\ ‘.:c
\5 . Wy
Most proposals for clustering algorithms have been based on introspection. 8
i i f tudied -approach i
Few proposed algorithms have had their performance stu . -Oupapp e
involves (a) striving to avoid comparing distances on remote parts of thc. data ":a‘f
(because metrics deserve only minimum trust), and (b) using a stochastically- ::1‘%3

defined test bed to measure, and where possib!.e understand, the Pcrformanc.c 0

of an evolving algorithm, with the intent of using our understanding to modify »
it in such a way as to improve its performance. — 7 .../ e '_
a o]
Abstract continued on reverse side . ‘:i

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ®
DIunCLASSIFEDAUNUMITED [SAME AS RPT.] DTIC USERS Unclassified :
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Ares Code) | 22c. OFFICE SYMBOL “g’.
—— _ 'l:.’:
DD FORM 1473, 84 MAR 3 APR edition may be used until exhausted. ECURI . F THIS PAGE o
ae +
All other editions are obsolete. UNCLASSIFIED 0-‘.

v,

%)

y{A I A0 SN AL A AT RN AT TN AT,
..‘i‘q_'ll.“l.'.v- v A7), .‘- "-"l. AN NN !’l'"l'. !'! 3 .'.l'..l MY -‘!‘a‘l u.l‘- A d { .\) \ s \ \ > ‘h M L) N) LN WY . \

(PRI R | ‘p ¢ RN AR Y VN UNY UYL U Vg ek ng® AW 1§ ray Mg 7 B Naf Yol V.8 oo 6.8 6.0 1L, 0°8 05 4P 8 e 5, a s 3

UNCLASSIFIED ' _ ;

SECURNITY CLASSIFICATION OF THIS PASE - L]
t \ . k: rez) ' ::

) . i :‘:
2 Th:s QurTest bed involves 3 circular Gaussian samples, of size 50 each, R
centercd at the vertices of an equilateral triangle of side (6 Ifits use we’ B
assum&,that a 3-group answer is being sou ght Thus we—a;ﬁ only concernod’“ 15 fjﬁ
with a part of the clustering process. & j:l;
Our early algorithms begin to misbehave in the range 55 ¢ €7. Our ':",
successive steps of improvement work at smaller and smaller ¢ . The last e
version we have tried still performs usefully (median misclassification about !
16%) at ¢ = 2.7, where knowledge of three populations would only let us hold]
misclassification to a median of 13.3%. é
Comparison’(by Kaye Basford) with a Gaussian maximum likelihood ,:3
algorithm on the same set of triple samples shows only slightly better sl
performance than for our algorithm. 3

4
)
‘.;

P
Paaladts

f«t’-’-’ <

b
X

o)

Rl

3R Ay

Lt RAS

A g

A

UNCLASSIFIED o

SECURITY CLASSIFICATION OF TNIS PAGE ?

1

l n - -~y l'(

“ Al .l.'. “t. ‘l..‘ '.’ ‘. ‘. l. l"' "‘l'.“’ l.!‘s.!.l'. i.?.l 0. %, .l s l‘. .. ty ”l‘-.'n‘l’n l'. l‘vl.' (3 l" .| y .. .l " 8% ‘1 ‘ol ') ‘..“ o.""l "‘pl .

AL A I A A A LTRSS A A A R A R I AN KN A ALY (AN F0 0.0 0 0 D D0 54 o' B8 2°8 2 4 978 55 54 46 @' h g% 28 3" &

ARo 23360-8-MA

Tuning a major part of a clustering algorithm
by

Katherine M. Hansen and John W. Tukey

Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544

Technical Report No. 294
Department of Statistics
Princeton University 08544

February 1988

Prepared in connection with research at Princeton University
sponsored by the Army Research Office (Durham), DAAL03-86-K-0073.

» . S . , . - i . T v,) W ,
RATULSKIGIOE AN “0. OO XA ,‘Q.O' X !1. |.ﬁ'l.l'o. . 090,0%. 400 ¥ W 4..!!.,!’.‘0?“*".. v ‘l’. » ¥ _.‘ﬂ'.'o‘ Il) .!.‘ \ !..‘ > l".l...l"

)
¥ 0%, .|‘."~‘|'?

PR

3

W

AN S & MR LWL AL WL I, TN Y UL N TU WL W WU WL NN NG WU RWU N

Tuning a major part of a clustering algorithm

Katherine M. Hansen and John W. Tukey

Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544

ABSTRACT

Most proposals for clustering algorithms have been based on introspection.

Few proposed algorithms have had their performance studied. Our approach
involves (a) striving to avoid comparing distances on remote parts of the data
(because metrics deserve only minimum trust), and (b) using a stochastically-
defined test bed to measure, and where possible understand, the performance
of an evolving algorithm, with the intent of using our understanding to modify
it in such a way as to improve its performance.

Our test bed involves 3 circular Gaussian samples, of size 50 each,
centered at the vertices of an equilateral triangle of side ra. In its use we

assume that a 3-group answer is being sought. Thus we are only concerned
with a part of the clustering process.

Our early algorithms begin to misbehave in the range S< ¢ <7. Our
successive steps of improvement work at smaller and smaller ¢ . The last
version we have tried still performs usefully (median misclassification about

16%) at ¢t = 2.7, where knowledge of three populations would only let us hold
misclassification to a median of 13.3%.

Comparison (by Kaye Basford) with a Gaussian maximum likelihood
algorithm on the same set of triple samples shows only slightly better
performance than for our algorithm.

The steps of improvement will be discussed.

1 Accession For

NTIS GRA&I
DTIC TAB 0O
Unannounced [

Prepared in part in connection with research at Princeton University sponsored by the ',:
Army Research Office (Durham), DAALO03-86-K-0073. By. °

Distribution/ A%

Availability Codes l.‘

| jAvasl and or""—

Dist pecidl A

v B¢

»
8

Justification _ "}

o

~x N “m N - - P TR AT LT W RN R N A LW ALY
D l‘sl‘g\‘m D '4‘! SO .‘\. w I ! Yo) ‘q‘l‘v . N l'.‘d‘- ORI S ' AR N .! { DR W Ua i n Y 4=y 0 < » Y v

[ofs]
INSPHC it O

: Tuning a major part of a clustering algorithm IE:
My
.'!
Katherine M. Hansen and John W . Tukey .
Technical Report No. 294 b
Princeton University o
Fine Hall oy
Washington Road o
Princeton, NJ 08544 »
N
1. Introduction. ;'.::‘
U
'
Since clustering ought to be an aspect of data analysis, we ought to plan to [
]
take an empirical evolutionary approach to its conduct. This is done here for a o
%
&
major part of the clustering problem: how to cluster given the number of :::Z
. .'.‘
clusters to be sought, ‘;
9
Yo
PART A: Background and final performance '::
)
w3

2. Clustering.

Some have argued that the purpose of clustering a set of points is to prove

=50

that points belong to different groups. We have taken the opposite extreme, e
"]
expecting to have misclassification - - real problems are hard - - but striving to %
(]
minimize it.
Most clustering procedures can be persuaded to give rise to a variety of ~
l
answers; one putting all the points in one group, through putting them in two ,
. "
groups, in three groups, and so on up to each point its own group. When, as is “
o)
. “
most often the case, these subgroupmgs are nested - - e.g. every group of the 1.3
N
set of 4 groups is contained in one group of the set of three - - or of two - - the Ny
2,
——————————)
Prepared in part in connection with research at Princeton University sponsored by the ’
Army Research Office (Durham), DAALQ3-86-K-0073. .;:'j
o,
]
. \
W,
February 5, 1988
. i
3

. e .- . e~ - -~ et mTR® L3 Wyawgw - gy frr-l\(f'v‘f_'
.’Qk’..A'.‘l.l’l".l L X ~‘b~ .I”c A .. e - ¥y "’ "v .I".l n® -i.‘, KX Ji I“...'.' ~ & ‘-.l. ~ \ _\._\ “- > \." gt

-

«'5‘: ‘\ A% ~ . ,l“.!. ‘0'."-"‘- » “l‘ (A A

clustering is usually called hierarchical. Knowing where to stop the gathering-

together process is obviously very important. However, we have not tried to
work on this problem. Our work has focussed on doing a good job of making a

prechosen number of clusters, specifically 3.

Many procedures operate by adding links - - connections of one vertex
(one data point) to another - - step by step, often one at a time. Once two data
points have been joined by a chain of links, there is no need to join them
further. Thus most methods grow what are combinatorially trees, but what look
- - in 2 and 3 dimensions where we can look - - like vines. We shall call sets of

vertices linked in a way that includes no cycles vines.

Most clustering procedures begin with either an overall criterion ora e
next-link-to-be-added rule. These criteria or rules typically come down from on
high, like the famous tablets of stone. One can then only illustrate their
performance. Our work has focused on evolving an algorithmic procedure, step
by step, by looking for weaknesses of performance in the current algorithm,

and then trying to find helpful modifications.

Most clustering procedures use single criteria or single rules. We have
found it important to use successive steps that use quite different rules or

criteria in different steps.

All clustering procedures use distance measures, or some sorts of
surrogate. We have confined ourselves to starting with Euclidean (L ()
distance, but have emphasized the rank of the nearness of other points to a

selected point. Thus each link, say AB, has two such ranks, one for how near

February 5, 1988

M f‘d’f 'f l r-r X ~r- . -\' « . " N

2 AT R N M A NN NN

"
s,

(rankwise) a neighbor B is to A and one for how near (rankwise) a neighbor A

is to B.

3. Test bed.

Our basic tool in evolving our procedures has been triple samples, of 50
each, frem 3 circular Gaussian distributions, centered at the vertices of an
equilateral triangle of side r6 . We have found 10 triple samples, for each ¢,
enough to guide us in making the next step of improvement. More would, of

course, be needed if one wanted more precise assessment of algorithm

performance. We have drawn fresh sets of 10 triple samples for each ¢, so that
performance consistency for nearby ¢ offers independently supportive evidence.

We have so far used, successively, t=7, 5, 4.5, 4, 3.7, 3.2, 2.9 and 2.7.

We judge the performance of any procedure on a triple sample by the
number of points misclassified - - specifically by the number of minorities, see
below. The performance on a set of 10 triple samples is then measured by the

median, or perhaps the mean, of the number of misclassifications.

4. Performance of the currently preferred procedure.

* testbed *

We now describe briefly the performance of the procedure summarized in
Section 16, which is our currently preferred choice, both on the test bed and on

some real data.

Two extremes of the 10 realizations of the test bed for £=2.7, one easy

and one hard, are shown in exhibit 1. The numbers of misclassifications are 16

February 5, 1988

1 ® M . L PR . ST O N N N o T RS % T A SO N TR A)
!‘-"-I‘n_-_l‘;_‘m AAACAIAIANA ALNLHLRTE LHLHRGHY '!'l'n A N e S AL AR N et * . ! ')

S

A

0
-

]
PNt

L

o
Q o el

ORI

.

] -

P T N T T I O R O R A U U O A N O O R L N W W W UWUNUS LN A R T L NV N e N M e, SRS AL

-~

b -4-

o o
", and 73, respectively. If we knew the 3 population distributions exactly, there N
N i
g would be an optimum partition of the plane into 3 120° sectors. Classification

'."E by these sectors would have made 16 and 26 misclassifications, respectively.

K ofiou a1

(The median (mean) numbers of misclassifications, over the 10 realizations are

25.5(29.7) for the procedure, and 20(21.3) for infinite knowledge.)

"
oy .
" exhibit 1 about here \
* t
With only 3 samples of 50 each, we come, in median, within 5 of the
A]
o
:‘, number of misclassifications corresponding to knowing the populations (but not)
) (]
K how many observations come from each). Any substantial further
i improvement seems unlikely. :
l‘. [
l:’
N In cooperation with Dr. Kaye Basford, the same sets of triple samples have 2
¥
. been analyzed using a Gaussian maximum likelihood procedure (Basford and y
.' McLachlan, 1985), which does slightly better than ours (and, of course, still A
? not as well as population knowledge). Since real data is not likely to be exactly
:: Gaussian, and since no Gaussian assumption was explicit in our development
L)
L)
:', (or visible in the final procedure) it is reasonable to hope that our procedure
.
will at least equal the performance of Basford and McLachlan’s on real data.
% "
bt N
} .Q
~ * real data * ﬂ
N
4 Our main test bed is conveniently 2-dimensional (3 population centers s
<
’ ~
M define a plane), but our algorithms make no explicit use of this fact. Thus we :
* ?
‘ have no difficulty applying them to more dimensional data. J
L . . >
a Our first real example is the well-known /ris data, due to Edgar Anderson '

-,
’-'-

February S, 1988

-t AT A N 5, AR N ._:’\— ":.V - \-‘-

A0 ’ ¥y A e R AT T ing D Viag e T AL OA SRS R AN O
Tt N ath 404 A% T8 4 g et o . « o 8 ’

R A AT R RN A O O OO X O A X I R U A U O T I A I M T O TR) 088 8.0 8.0 0 0 8" ‘R aY

(1935) and used by R. A. Fisher (1936) in his basic paper on the discriminant
function. In the present context, we neglect the information about species
(there were 50 observations on each of 3) and use only the 4 coordinates (petal
and sepal length and width) of each blossom. We find only 23
misclassifications (all of, course, involving the two most similar species).

Standard methods give 31, 50 and 47, respectively.

Our second real example is geochemical, involving analyses of chemical
results for samples from 3 carbonate microfacies (here labelled 1, 2, and 6).
Several views of the data are given in exhibit 2. The first of 12 variables
represents the weight percent of insoluble residue for each sample. The
remaining variables represent concentrations of eleven elements. For this data,
our procedure, given an exogenous choice of three as the number of clusters,
makes only 3 misclassifications. (Earlier attempts with classical clustering
procedures were quite unsatisfactory; 17 misclassifications for ‘complete linkage
and single linkage, 18 for average linkage. "Ward’s method gave 7
misclassifications.) (Data for the geochemical example provided by the courtesy

of Ms. Ruth Strauss.)

exhibit 2 about here

S. What we have not yet done.

By limiting our more careful systematic studies to test beds involving
— exactly 3 populations

— each circular in shape

February 5, 1988

LY TR A ' MO T I W, £ €S0 2 Y e e R B b
W .0,‘.!’g.\.|‘.’l AAACAONGAGH h. " h"‘n‘?’-" o A ... ';'. .. .o.. AW Mg "c'.\u..‘;

-~

-

1.' l" '.' 3‘ ‘. 1,".‘1- i o b

‘-Iﬁ *.,'l”l,’ y

’

s JW

PR CRTAT AL A AR R A R R R O R W I UV VU U I SO W W, v MENXYRY Ry LY

- symmetrically placed
- in 2 dimensions
- Gaussian in shape
we have clearly only begun a careful investigation.

We have done a little to explore (a) a similar test bed in 5 dimensions, (b)
a similar 2-dimensional test bed with 3 populations of different variances ar d
(c) a 2-dimensional test bed with 3 populations of different shapes. Our results
have been sketchy but encouraging in all cases, (see Sections 18 to 20) as have
very preliminary looks (not discussed further here) at ways to "squeeze down"

unneeded dimensions.

What can be done, once an overall clustering has been completed, to look
at pairs - - or other small groups - - of clusters separately, with a view to

polishing the clustering, is uncertain.

Clearly much further exploration would be helpful.

PART B: Evolution of our procedures

6. Initial choices.

The shakiest part of any clustering procedure is the choice of the metric.
No one has seen any way to avoid its use, directly or indirectly. Equally, no
one has seen any way to use the final clustering as a basis for improving the

choice. Alas, alack-a-day!

The sort of difficulty that can arise is well shown in exhibit 3, where a

February 5, 1988

P TN N s % > % % N “» 3% y It o 0 S TN
: ..l..l.. N R O PG G, L A G AP

P 1% % BN Y% PN TS Y
L N S AU NI AA e AV Al R e,)

S
=)

o

-
v -_-

b0

xS

-

e A AW A R

o

Ry Sy AW TR

oL

v

G YN

IR LWL W LA UN LA UAAR A UM AN LY N e o W ane NN ‘. a't a¥ - YOI TR O W DU RN Y P Y Y RIvE s, o %’ -ata’ b »

-7-
"
':c
:;E) classical clustering procedure is run on data naturally falling into 3 groups of
¥
“.
™ differing spread.
:;o
-+ .y
W exhibit 3 about here
b
M o — .
- On careful examination, however, while it is apparent that while we must
:"‘
;s: use the metric locally, it is far from obvious that we need use it globally. By
M
?
::; ' focusing on the nearness-rank of each link from both ends, we focus on only
K
" relatively local uses of the metric.
¥
L)
, While we do use the original metric for tie-breaking, it seems unlikely that
My
' -
such uses have substantial effects on the outcome of our procedure.
o What we would like to have - - and have only begun to approach - - would
0
';' be a near invariance of result when, for instance, one coordinate,
;.‘,, y, 1 £ y £ 10, were replaced by e” . It seems likely that further steps on
N . .
0 such a direction mr=t come from procedures to reconfigure coordinates rather
N
b .
A than from clustering procedures themselves.
&
~' . . e 0
ot 7. Nearest neighbors and total minorities.
% : : . ,
Our methods are all based on ranks of neighborliness, equal to j if a point y
e . . y I
ot is point x’s j** nearest neighbor, that is, when exactly j—1 points are closer to
Al
o x than is y. Note that this is not necessarily a symmetric relationship, i.e. x 1
“ »
* ¥
need not be y’s j* nearest neighbor. We measure nearness using the 1
! [
o <
N Euclidean L(® norm. ;i
.(7:, [
)
& The goodness of our cluster solutions on the triangular Gaussian test beds
. !
LA,
e is measured by a total minorities criterion, which is computed as follows: !
\J
)
v.

February 5, 1988

' ST IP B Ay J g™ P E NN G S P L o '-F'-"I' g ‘.r‘-rv N) .r,._ KN
't‘n‘!‘,o'.;’ ':'n ACA .c.n.n.‘:’._n‘.n.t'., M " "’ ""’" i) " " \\.\\'\ oY '\\.\\

e run the algorithm until exactly three clusters remain

e count the number of points in each output cluster coming from a

minority subswarm (from either subswarm other than the single subswarm

occurring most frequently)

e add up these counts, to find the total minority count.

For example, with the following output:

cluster # 1
cluster #2
cluster # 3

subswarm subswarm subswarm

A B C Minorities
45 7 2 9
3 35 0 3
2 8 48 10
22

the total minority count is 22.

8. Minrank and maxrank - the first approach

Our initial algorithms are based on some simple properties of links

between points. Consider a link joining two points, x and y. The link may be

classified according to two ranks. If point y is point x’s R ** nearest neighbor

and point x is point Ry"' nearest neighbor, then define the following:

minrank = min{R, R,}

maxrank = max{R, Ry}

It is these quantities which we plan to substitute for distance. With either

minrank or maxrank as our basic unit of link length, we will have a substantial

problem with ties. Both here and later we shall break ties with Euclidean

distance; however we will soon move to a criterion which has much less

XY

February 5, 1988

-~ 1‘,.f"". LA

Xy

ST
tod

‘ﬁ’.1", v “‘ n'

Yy

-

o
o
C
Ll

1'?’ - Pd t"/ "

)

"

LS
»
LA

"
)
%

-
rF

D a et e g gt e Vel el Vel e Cat Ue® et gk e ® SaW bl vug ta¥o Rl el Nty p8a- a®e Bt gbo #%0 BV @'y $%% $'a %8 872 48 6°2.0°0 ' 0y 'a iy a'p ¥ g R 0 0 e R S Ba? Ba®

« g

P

difficulty with ties.

PRI
e tew er e

Thus, if we are using maxranks, the first link to be added will be the

¥

4
N shortest of all links having a maxrank of 1.

)
4
.f: Both the minrank and maxrank methods were tested on the test beds with
A t=5 and t=7. Results are shown in exhibit 4. The performance of both

o]
‘. algorithms is fair over most trials at =7, and is poor at t=5. It seems that

)

g

minrank does a better job than maxrank.

i

N -
:.: exhibit 4 about here

U .

‘
However, when we plot the actual vines, we have reason to suspect that
e
b
;::: using maxranks may be the more promising approach. This is due to the
0
k simple character of many of the maxrank failures.
o4 exhibit 5 about here

I
e
‘. Exhibit 5 shows a poor maxrank solution for t=7. For this data set (total
[minorities = 49), we have been left with one very small cluster out of the

W, three we have asked for. This is not surprising since a rather isolated point is
P4

1

' likely to produce only links with large maxranks. Such a point will be added to
..
‘. »
(= a vine late in the selection process. This problem may be easier to diagnose
5
"’ -and correct than the problems with the minrank algorithm.
".
W 9. The basic criterion.

!. -
! We want to force links to isolated points to be added to vines earlier in the
“ process. One way of identifying such links is by noting the sizes (counts) of
N

"o .

"W the two vinelets (protoclusters) that would be joined by adding the link. For an

February 5, 1988

.

el

- . e .- R i .
J‘\\J‘_ f.‘-‘ ‘.J'.‘f.'f\v‘. o \-.\f\.- " _\-" . \f- 4 ~'.'-f'*- "

A L S

1]
! A

J et o, Sy P W Oy T o o O
DRI RO A A WO AN P SRV e, Ny

"tof‘.ﬁ‘.-'.‘.f‘.ﬁ.". '..‘.‘. AR 'e’; | F MY, n'!‘n AL AL l'.‘l‘t‘ L . -"‘ \ely

RPN LR R A A TR ROV K O KO R Aapty g’ IR N FURT FUVL WL UV IO IR 2t §8 oot .0 LS

- 10 -

isolated point the lesser of these counts will be one, so that we might consider

a link-criterion of the following form:

basic criterion = (5 + maxrank)(1 + In (lesser of counts)).

At each step we add the link with the lowest criterion value, again breaking ties
with the Euclidean distance between the two points joined by a link. Note that
since cluster counts increase at each step, the basic criterion value for each edge

must be recomputed regularly.

exhibit 6 about here

Exhibit 6 shows the performance of this technique for t=4, 4.5, and 5.
With t=5, performance is quite good; results for r=4 and 4.5 are not as
satisfactory. Note, however, that at =4 the performance of the basic criterion

surpasses that of the minrank and maxrank algorithms at ¢=5.

At this part, we tried using minrank and (arithmetic and geometric)
meanrank in place of maxrank in the definition of the basic criterion. Different
values of the constants were tested. These adjustments did not give improved

results.

As before, we turn to pictures of vine-clusters to reveal configurations
giving poor results. Exhibit 7 shows the worst of the ten trials for 1=4.5; this
gave 44 total minorities. Clearly the difficulty lies with the filament running
horizontally across the picture. We need to find ways to improve on such

vines.

exhibit 7 about here

February 5, 1988

2

»
-

g A

-
-

-

. ol L

~ -
- Ryl
- e _.,_J:‘

PR LA

-'-"-"-' .

A

‘.I..('.{ 4. ;

YL T P A A P R IR A S SR ANA A D
() "’ ‘I‘.“‘ ‘-"-* .. .\‘ 0,0 0y, - W, A

- p T YT % "
!' "l'!ll'! n'i‘-' Al a“.v‘\ ' ' A , b A A 'lt ..

T TN L TU I T R i L W, W UV A R W T 92° dat Bat Ba® a0 88" $2° 0% bat Ba iyt ba¥ 2t 45V 8 et _fat fSad 3

- 11 -

10. Using core points - the basic method.

We would like to be able to emphasize certain "core points" which lie near
the centers of each subswarm. If we can identify such points - - we shall
suggest three ways of doing so - - we can build the framework of a cluster

solution based on them.

Suppose that we have a list of about 50 core points, ignoring for the
present how this list was obtained. Then we can use the following basic core-
growing technique:

e Start from the beginning with this reduced set of points, using the basic

criterion algorithm to add links until exactly three clusters, involving only

the 50 points, are left.
e Treat this structure as the beginning of a vinery for all 150 points.

e Links are now added - - between single points and pre-formed groups of
size 2 2 (in practice, usually 2 15) until only 3 clusters remain - - in the
order determined by the basic criterion, which in this case is equivalent to

maxrank.

The three core-point vines serve as foundations to which the other points are

added.

11. Identifying core points I - high-order and vine neighbors.

One property of points in a vine is their order, or the number of links
joining them to other points. The central part of the long filament running

across the picture of Exhibit 7 is unbranched - - that is, all of the points are of

February 5, 1988

» A AR P oy iy L W Wiy iy VN Ty Ty W) 7 g €l Wpmar
* DN LY ER A L TR AT AT ‘ ,.

NN

Y

3
L X

A P f.'

g 0y 40y e BB fte £30 K0p 675 B0 ' 0000 470 4 08 ged B0 6P (ot hat §0 08 620 020 000 Nt Ga? 0,0 0p"

-12 -
order £ 2. This suggests that we define core points based on properties related
to order. Our first type of core points was identified as follows:

e run the basic criterion algorithm until a complete (n—1 links) vine has

been generated,
¢ from this vine, choose as core points those points that
(a) are of order2 3 or

(b) are a vine-neighbor of such a point AND are on an arc of links joining

one point of order 2 3 to another such.

The points satisfying these criteria for the data of exhibit 7 are in exhibit 8.

These points do seem more clearly separated into three parts.

exhibit 8 about here

Results for the basic core-cluster technique with core points satisfying the

above criteria for the t=4 and 4.5 data sets are given in exhibit 9.

exhibit 9 about here

We see a small improvement over the basic criterion method at t=4; this
was not repeated at r=4.5. Examining pictures of core clusters indicates that
inclusion of vine-neighbors of high order points may be responsible for some of
the problems. It is this observation that leads us to the next method of

describing core points.

12. Ideritifying core points II - high-order.

We now identify only points of order 2 3 as core points. The basic core-

February 5, 1988

ORI W o P T, R R R R R NN A R N R N O R R R ORI
A T N ATt o A e A A o e A Y O T AR SR AR N S S

R R AR A R R R I N T o N N N L R N R N PO VO VO WX U O A A AN O O S A SN L MNLN VLU WUV .08, ",

A
o

¢,

A "

-13 -

. . cluster technique applied to these points for t=4 and 4.5 gives the results

o p g

W

K summarized in exhibit 10. A considerable gain over both the basic procedure
i}f' and the first core-point procedure has been achieved.

l!‘
"
W
-:‘!’. exhibit 10 about here
.4’:"‘
K2 13. Identifying core points III - local density.
R
o A third way to select core points is to choose points lying in regions of
‘.i.' high point-density, since these regions are likely to represent cluster centers.
W
{:’ However, we do not wish to use a global measure of density directly - we want
a..‘
)
to use local properties to identify core points. To do this takes a several-step
wy
:‘::: procedure. The approach we use is as follows:
B
:::g: ¢ Build a complete spanning vine (combinatorially a minimum spanning
: tree) using the basic criterion.
1
s
‘}: e Find the density (global) at each point, defined to be (distance to 10
"W
'y nearest neighbor)~2 (other exponents might be appropriate for dimensions
’ \J
:‘ ! other than 2); other constants than 10 would be appropriate for other total
} numbers of data points.
'gQ e Compute for each point on the vine the following:

g

oo logdens = log(density).

")
Aml

. ¢ Smooth logdens on the vine as follows:

o

("
e - For a point of order 1, do not change logdens.
y.',
b — For a point of order 2, replace logdens by the median of logdens
AN
;s:i A values at the original point and at the two directly linked points.
o
!:'
I

February 5, 1988

. T A A A R A AL S A LA A LA At T AN L AT, A AT . " R R A N -
OGO O 00 O -c > LS M IR N NN n Wil NN -’ AN \ g Ao i o.o ,,n, >yl \ e

- 14 -

g
o
3

el
-

-~ For a point of order 2 3, replace logdens by the second-highest of TN

-

-

the logdens values at the original point and at each directly, linked

4 point.

I
R e > - - .

) ¢ Continue smoothing cycles until no further changes take place.

_‘i e Find all local maxima - - points which are not linked to highcr density

points - - either directly or through points of equal logdens. 'ﬁ

e For every point, record the difference in logdens (log ratio of densities)

':'; from the highest local maximum that can be reached monotonically along
¢ '
:“ the vine. (A local max can be reached monotonically along the vine from \
W a point if an arc of links connects the two and if the logdens values at the .
; ‘ points along the arc increase weakly monotonically towards the local

maximum.) We use small logdens differences (zero for local maxima) as

W our measure of high local density. "
4 : o : !
d e We want about 1/3 of the total points to be identified as core points. .
b
- We will choose all of the local maxima and will select others in order of)
F
2
increasing logdens difference. Due to the smoothing of logdens values on)
) {
D
- the vine, it sometimes occurs that several points with equal logdens)
z
A differences are tied for the 50th position on the list. In this case, none of :.':
1
K M
) the tying points are chosen as core points, and the total number of core \
'.
; points is less than 50. 3
N :
' ' R
N exhibit 11 about here .
- Using the above approach to select 50 core points for each data set at r=4 !
. _
t . . . o . A
: and 4.5, we obtain the results given in exhibit 11. The algorithm represents an .,“
i
[}
td g
' February 5, 1988
¢ .
i >
' o ") P N N L IRALE 1 N’ LY Al AP A N g » P AT AT g g Vg Ty Yy TRART AR RS R -
RONC e "Jl‘.'n % AR I {0 "“-” "-.l'o RN LA I‘ R) .l;\ ; ' N A AT A AN AN, a \ .'\f\]

a8

R R R A R I AT A T TR U U T N c DT Y e TR fo? B0 g ba® Bat fa¢ gat yor * 4at e e 00" I’ g q "

- .~ W - - o

[t
i,
- 15 -
!
St
' improvement over the basic-criterion algorithm, and seems to be comparable in \
N
13 - . 3 "‘
performance to the high-order algorithm. Exhibit 12 gives results for the local aX]
. .(
density and high-order algorithms with the t=3.2 and 3.7 data. For these data :'.: ;
- ‘
sets, the local density method generally gives lower minority counts. .} y
" o)
exhibit 12 about here NG
I
If all the data points adhere closely to a smooth curve - - which might be a }:'
AL
straight line - - then the complete vine will have no points of order 2 2 and X
¢
WX
there are no high order core point so the first two approaches fail. However, :::n:
Q'O
Un/Al
.
the local density approach will still apply! A
2
14. Basic bisector polish. I
i* }
. i
Examining pictures of vine-clusters formed from core points, we discover a
. - » h.‘
pattern common to many of the failures of the local density and high-order o~
S
algorithms. Exhibit 13 is a good example. ~3M
P
exhibit 13 about here .
: : : : "
The core points of each cluster are centered in an appropriate location, yet
i
branches to outlying core points bring in data points from other subswarms. r
We would like to use information about the location of the core-point clusters ";1'
by
. . . . S . . N
without allowing distant points to join in the cluster. The easiest way to do this N
>
is to give up our reliance on handling links one at a time, in fact to limit the :j'
“~
‘.
: : . : -
use of links to the core-point clusters. We suggest the following approach: };
Y,
¢ Grow vines of core-points using the basic criterion, continuing until o
]
exactly three core-clusters remain (can a good stopping rule be found)
W
).
February 5, 1988
»'

AR Y p T g W g W WP AW Y P T Y - AN WYL TN T " A P PR JO N D v D% % 3% P% 3N
A L T W TG T T L T i N T R S G A N R N R N T A N P A A N e At s e

[ERLTILYY Y IV I .yt g , ¥ Xavlu N Wy * - - - PO SAT XY SRIRATC OV ‘o g% @ », - - w, g

- 16 -
" here?)

¢ Calculate the centers of gravity of the points constituting each core-

o

)
o cluster.
"“
4"‘..'
L . . .
0, e Calculate the Euclidean distance from each data point to each center of
oy gravity. A data point is assigned to the cluster corresponding to the
:::‘.‘ nearest center of gravity. (Note that some core points might be re-
o
) e e sl

assigned to clusters other than their initial core-cluster.)

B
}:“ For the case of three clusters, the algorithm described above is equivalent
a

N

]
::'.. to separating the clusters by the perpendicular bisectors of the triangle with
o vertices at the three centers of gravity. Exhibit 14 shows the bisectors for the
)
)
‘.:$ data of exhibit 13, using the local density core points. The number of
i'.
D)
- minorities has been reduced from 32 to 12.
2
)
o exhibit 14 about here
t;‘
l:.'
e 15. Bisector polish - notes, results, and comments.
_\
1
_ We can use the basic bisector polish algorithm with either the high-order

r
b

or the local density core points. We can also iterate the process by running the

o
o basic bisector pelish algorithm and then computing the centers of gravity of
',

.

-
7 each of the completed clusters. Points are then re-classified according to their

distance from each of the iterated centers.

-
I: PART C: Performance of current afgorithm

3
.‘\
)
s"
N
l'.

February 5, 1988

g‘l
!

3 -

Tl v ~, Tl gl n AT AT AT AT AT e 0 ATl e R S R S A SR R R S A Sl S Ol T W R R R N Y
KA »‘Q‘.‘ '1‘ A Jl.-.l J.. .- \ ,.l..Q. X .o . A' ~.’.‘ '. A '-f A P S 'yf‘ Moo .A.I J. N\ \~\

ol Vol fat Tal o ¥ Vud V.8 0e8 v of W9 g W ‘0 op Gt -l ol 9 4u0 ol it 6 aa

-17 -
16. Comparative performance.

Results from the basic bisector polish and the iterated bisector polish

algorithms for ¢t = 2.9 are given in exhibit 15.

exhibit 15 about here

As we can see, bisector polishing represents an improvement over both the
high-order and local density methods. Exhibit 16 gives the results of bisector
polishing when population means are used in place of core-point centers of gravity.
These are the best fixed partitions that can be chosen. Their performance gives

a lower bound to the number of total minorities we might reasonably expect.

exhibit 16 about here

A brief comparison with standard methods of clustering is given in exhibit

17.

exhibit 17 about here

17. Current preference.
Our current recommendation then is the following overall algorithm:

A) Use the basic-criterion algorithm (Section 9) - - with its step-by-step

" insertion of links - - to form a single spanning vine containing all data

points.

February §, 1988

Y "ol T W L WA o A, Co il 7, Mo Cu AT o WO P P
AR S O T 7 2 AN S N A s A A A RS A W, A AN A

of LR WA

oy

RS |
ey &)

AL

x‘-"!...

(A S
NNV RN

'(.‘(',n’{ l“l.‘.l". 19

oy

N

- 18 -

B) Use the local-density algorithm (Section 13) - - with its near-neighbor

density, vine smoothing, and differencing - - to identify core points.

C) (Here would be a logical place for a step to identify how many clusters

we want.)

D) Use the basic-criterion algorithm (Section 9) again, this time on the

core points only, to form 3 clusters.

E) Starting with the centers of gravity of these 3 clusters, use the iterated
bisector algorithm (Sections 15, 16) to assign every point to one of the

three clusters.

Notice the presence of 4 or 5 steps, using at least three wholly different

algorithms. Our preferred procedure is not simple, but it seems to be effective.

Notice also that, while steps (A), (B), and (D) - - presumably together
with (C), when such becomes available - - do fairly well in focusing on local
comparisons of distances, step (E) compares much larger distances. A plausible
place for a further step (after E) would involve looking even more carefully at

pairs of adjacent clusters with the intent of improving their separation.

PART D: Sketches of further explorations

18. S-dimensional test bed.
We have looked briefly at 5-dimensional test beds constructed as follows:

e two of the dimensions represent the familiar circular Gaussians, with 3

subswarms centered on the vertices of an equilateral triangle of side ¢t

February 5, 1988

% Cr e LN e 2N T AW L LT W e L e LY W LW e W L)
'n.-..!”t. f.. 'F"'. h ‘unlt iy,

B %
s:’&l_‘r'r rod

TS b
O h A '

2
’\.A B

o,

PSRN
PN S A Y Nk

. -
]
LA

W i TR N X UY U NS USRS

- 19 -

e the remaining 3 dimensions are independently sampled from the

standard Gaussian distribution.

We tested the basic and iterated bisector polish algorithms on 10
realizations of the 5-dimensional structure at each of ¢ = 3.2, 2.9, and 2.7. In
terms of the median number of misclassifications, the basic bisector polish
algorithms were inferior to the corresponding iterated bisector polish
algoirthms. Exhibit 18 shows the results for the iterated bisector polish

algorithms.

19. Unequal-variance test bed.

All of the core-point algorithms were tested on a series of synthetic data
sets containing 3 circular Gaussian subswarms of unequal variance. As before,

the subswarms are centered at the vertices of an equilateral triangle. the

triangle has sides of length (%*J§+ %‘J 3)Ac, where the first subswarm has

variance 62, the third has variance 362. We generated 10 such data sets at

e

eachof A= 3and A = 2.7.

Ty
> A4
RPN

-

The iterated bisector polish algorithms out-performed both the basic core-

o]
&

point and bisector polish methods. Results for the iterated bisector polish

3N

algorithms are summarized in Exhibit 19. Exhibit 20 shows the results from

- -
o

classification by maximum likelihood and the population bisectors. Each of the

o

densities was completely specified for the maximum liklihood calculations; only

J,-_‘}

the means were used to calculate population bisectors.

- - -l
TR,

-

February 5, 1988

L LIS RS B L)

AN s T 8 e 0 e Wy 8 A '

A A TR AN G e S TG AN L T N R R A AT T A A S A G

B g g g g g RN g 08 4N bl 0ok ~ 0

B AR G0 8 8 Aas ik AR AL GANA SARN GO OEGa L L

] r
s ¢
o)
M .
i -20 -
\ ~
?' !
" 20. Unequal-shape test bed. :
A o
.Y ‘
) We generated series of test beds containing 3 2-dimensional Gaussian -
] '
c subswarms of unequal shape. The subswarms lie along an horizontal line %
i} W
, %
‘: segment of length 2z, we centered at each endpoint of the segment; the third N
) subswarm is centered at the midpoint. The central subswarm has standard -
&
»
'& deviation © in the direction parallel to the segment and 30 in the direction 2 y
b
K perpendicular to the segment. The subswarms at the endpoints of the segment
.‘ .'
;: are circular Gaussians with standard deviation ©. '::
1} (4
¢ :
A We generated 10 test beds for each of r=3.7 and 3.2. Exhibit 21 shows gi
two realizations of the unequally-shaped test beds. Results for the iterated
Y
N)
_ bisector algorithms are given in Exhibit 22. 3
‘.' ;
X REFERENCES .
lad
N
E Anderson, Edgar (1935). "The irises of the Gaspe Peninsula," Bull. Amer. Iris K
Soc. 59: 2-5. 3
n R
N Anderson, Edgar (1936). "The species problem in Iris," Ann. Mo. Bot. Gdn. <
[N Ly
Basford, K. and McLachlan, G. J. (1985). "Likehood estimation with normal
i T
4 mixture models,” Appl. Statistics, 34: 282-289.
A r
'; Fisher, R. A. (1936). "The use of multiple measurements in taxonomic 3
':' problems,” Annals of Eugenics, 7: 179-188. :
¢ .
3 :
r. -
.0
D N
; »
? -
February 5, 1988
y Y
A t
o

3! AL ¥ VLAY S RIESE FEN SIS T RN L) AL NN O 4
L) J‘.. V\‘.-"‘-.' .. N "f.‘ [‘l 54 > ')’If ll. '.

1 2dd

(o]
< r e ° °

°© o 9. 0.°

e o2 ©

N P ° &%° ‘Pgo

o % o dbq:s

o o
°s °°:°°% ::%‘9:8‘,0 o
o r % °°°%E‘o°°°¢b°g° 0 °
o 0% o P° @

o L ° oo °
Y] 1 1 1

©
-]
- [] -] -] ©
° °
a
ok ° :Q?:O%J’% °
°.3§ @ o320 800 o
¢P°°° %‘z"oY go‘poo:oooo
o - ® (] °°. & °
°° ng‘iﬂ%% 3° © o ©
° ° % ° °
. 8
? 1 1 1 1

4 -2 0 2 4 6

EXHIBIT 1: Two instances, one easy, one hard, of test bed triple samples (not
separately identified) for t = 27. The preferred procedure gave 16
misclassifications for the upper set and 73 for the lower set.

. , . . e e A e At S A e SR A R A
DO LA TN P, P Lo el R T VA S A S A
LT A0 AN T N o e . ot it Bt o > 00 o .

‘ﬁ E‘ ff:‘:‘??:

>

-"ir,_'-'i-'r '

-

Prs

e ds
LM

L
7[,'.

'l-"
-

b

PoIE

-

f',"&

2L

by " " s S ta
L)

%

MEAC AR A
) A!’l{,

pee

4

L QNN A X
/'-,‘."- ‘;'r"ﬁ

e e

A del 2l

el

l’-:
he)
A

<

T S

| &
-t

s

1
2
Fe

EXHIBIT 2: Six views of the geochemical data. (Plotting character = facies number.)

CRIVA S TRy -y AV, TV [v ’ . R N I P N A T T TR A S AR TN
0000, 0 0L 000N, l"l'-‘l",l.-,'bl . 0 OO 0N e, ‘ Bl *‘ he f - > W N Ny \.(\' \' '\ " \’ \' W N\ \

g g oai oy

AR T

-10

‘o"'.Q'Aifs’ltt"

v, ag* gt Sa® €% St Pa¥ et Fab a¥ et et voa® §at b Gud §at Ua¥ Bat 0uf MaS Dyl o0u AV el $o¥ 8% 09® ¥ RN AT R RV Ao B0 BV Bo0 gob
—
®
| 1 |] I |
-5 0 5 10 15 20 25 30
EXHIBIT 3: Result of running the single-linkage clustering algorithm on a data set
containing three subswarms of unequal variance. The first two subswarms, plotted as
circles and squares, have been merged into one cluster. The third subswarm, with greater
variance, has been split into two clusters, one containing only the single point at lower
right.
N T 200 T B g £ LT I O I AN NN NN

-&-{‘ -

WA =l

EXHIBIT 4: Some sample results on total minorities for the first approach. .:::
TOTAL MINORITIES O
My
maxrank minrank .;:':.';
=% =50 (=7°0% uSeess :q::f
Median | 25 63 0 a 2
uHinge | 49 9 $0 50 w
Max [$3 98 | 86 92 pe
g
M
(Mean) | 253 669 | 189 397 a3
®
By
* Actual total minorities: 0,0,0,0,2,49,49,49,51,53 e
** Actual total minorities: 1,50,51,51,51,75,97,97,98,98 o
*#¢ Actual total minorities: 0,0,0,0,0,0,2,50,51,86 .'
*#** Actual total minorities: 1,2,10,38,47,47,50,50,60,92 .
.:\
A 0
Note: We use "h" for "and a half” in reporting medians or hinges, where this is the only kind of non- :' !
integral value that can appear; we use ".5" for "and a half" in reporting means. :$ i
.
N
A
\-' h
L f
ﬁi

T 3

Q'.‘
a

£ 7
vz

' 'F. ‘. ‘."'('f‘.('; . i
PN XA

"r v v
Ay

* 5 o]

Y,

5 N
PAs
%

AR,
r‘- ‘-

s
x

'l

e T A S P AL

: ‘.‘ o _- W AP I '(‘:f‘;f; ;I‘ '.r,;d-.;;.: .~_..-_..'\J'_‘-:\'f\d:\l‘_'a..f_‘I ‘o
. 17 T R T ., . . - L) -

Fd

[O W A)

-
P
Y
.".
.

o
#a'a"n

o
&

-2 0 2 4 6 8

S,

2

EXHIBIT 5: A poor maxrank solution (49 total minorities) for t = 7. The reason for the
failure is clear: the lone point at the center of the picture produces links with very high
maxranks. In the full spanning vine, this point was joined to two other points by links
with maxranks of 12 and 41.

T o LML I g - .-- '. - W W Wy W "
-,\n.'-P-,. .‘ -‘.'u,"b' ~* \-...,.,',.-\.\:,-.-. . Y N » Py -.1.‘,,\,\‘,_,\ ‘- \.‘, ;\\.

i N]
Ly
EXHIBIT 6: Some sample results on total minorities for the basic criterion algorithm. .;!:!';I;
TOTAL MINORITIES ool
4 l:..
(=5* (=4.5%% (4t ﬂ:.:&
e
Median | sh 13 21h R
uHinge | 13 26 3
A R}
Max |27 4 40 i
)
i
Mean) | 93 175 210 fop
i

* Actual total minorities: 1,4,4,5,5,6,7,13,21,27
*+ Actual total minorities: 3,3,10,11,12,14,24,26,28 44 f
#+ Actual total minorities: 6,8,8,11,21,22,27,31,36,40

Note: For "h" see note to Exhibit 4. 9

R AR
."{ .
L

ool

.
l.

LN
."':.. '.-".
P,

l‘l
LA

« v_w e -
o & 4

e
1@ 1'%

IRLER L
&
'-'if s'ﬁ';b:;f,

e
’&

P ic it
" S
'l

>
., - .. T LV o . ; - v, h
TV I R O L N TR Tt P WL L PL LN DR AP R RE S K N I A A AL RN RNET s LART) g ?
ooty || MW ~’:\"$ l \' DI RN l"." 4 o, J“" " (W "" AT WA % \'\. » ._. AL, NN ¥ X

-4 -2 0 2 4 6 - 8

EXHIBIT 7: The worst of ten solutions for t=4.5 by the basic criterion algorithm, this
configuration yields 44 total minorities. Note the filament running through the center of
the picture connecting the square and circle subswarms, through two points of the third
subswarm. In the central region between the two subswarms, no branches split off from

- -

the filament.
1
BOUCT R Y g0 " p ™ g i, N AT AT TR el N AT AR A AT AR y P R T T L S LS ~ LY " AL \q‘)
T A v e AT et LR R N G S A N R T A e

i)
l ©
l.
ve 9
: < O+ o o
; + (?_'
O O*'o
+ +
o + 3
9 O ++ + O .
: o L * o ©+08
+
0 0 o
> Q o
O

‘ < |] | | |
) -4 -2 0 2 4 6 8

EXHIBIT 8: The high-order (circles) and vine-neighbor (crosses) core points for the
data of Exhibit 7. As suspected, the core points appear to be separated into three groups.
Note that the high-order points alone give a cleaner separation; it is this observation that
leads us to our second definition of core points.

W
)

v e e et et AT et wt at AT ATAT AN AT Y U A AT
Tt -,,"-\" e NI a0, AR - _,..s- Pty ,,\.\ \ '- ’ Ny

SR SAN
o <) Walb

%4 f~f~f‘f

oy .
i J.l o g-

AT S A
LN N

o

. v -
DO ey

EXHIBIT 9: Minority counts for the basic core-cluster technique using the first type of core points. .

TOTAL MINORITIES .

M_s. M“ \;

Median 17 16h i
uHinge | 23 31
Max 53 - A4 s

(Mean) 18.0 19.3 ’ ol

* Actual total minorities: 3,6,6,9,16,18,21,23,25,53
** Actual total minorities: 5,9,9,9,10,23,31,31,32,34 ot

Note: For "h" see note to Exhibit 4. B

ot

rs
‘ol

o

-
(]

'I

gL

o

NUYy
'

&

AR RREL
AR,

<o - - ey o T PR Y e - PR YR LV RPRY M R RNt AT AN s\
R R N R R N X S N o A S

------ o

I3
« e

-
R

K EXHIBIT 10: Total minorities for the basic core-cluster technique using the second type of core points. !
Note the improvement over results from the first type of core points (summarized in Exhibit 9.)

N TOTAL MINORITIES 2

" t=4.5% t=qr*

Median | 9h 10
o uHinge | 13 23 3
N Max 21 29

" (Mean) | 108 132

W * Actual total minorities: 3,3,7,8,8,11,13,13,21,21
" ** Actual total minorities: 4,5,6,8,9,11,12,23,25,29 "

[Note: For "h" see note to Exhibit 4.

e =

-’

-—.'
o)

PSS

)
Ty w =

LR

="

S W GAN
3 ¥ 5 e

PP Y Y
- -

S EL LT

I SNy RETAT AT ALT O S
D N -'-I"f“-‘lfld'h I.I'J'J'-f' .r- AN NN

K e

L)
-~ ~ \\J,\-\\
AU B R A A

FATRIAEN AT

P e
\ %

";‘,,r a4y 0% 0% $3 4% 8% 4% | e 49, KLY N Y LN TR AT 0. $al () 00 00 4.0 ‘gt 80 8%, 2 2* TH g 0a® B8l e ln B’ S Aa® .
1

oyt
W
ty

L]

EXHIBIT 11: Minority counts for the corecluster technique with core points identified by the local
density algorithm,

' TOTAL MINORITIES

g ase ttee

Median 8 11h
;;‘,; uHinge | 10 20
Max 14 4

R (Mean) 8.1 154

) * Actual total minorities: 3,3,6,6,8,8,10,10,13,14
Wi ** Actual total minorities: 5,6,8,9,11,12,13,20,26,44

Note: For "h" see note to Exhibit 4.

%D N W e] o ™ 3 e I ¥ s | Yo e 2] % 3 1'-'\-‘1*')-.*\ \,‘-,’\'"-’n'\‘h"‘"- ‘J“ ‘-F‘rf‘fv‘f‘
Ot Dl e Cootiod R ety '.lv., s it N ol'l.. O A I N L L D "‘ I\ T I

R ERN R 0,4 ¢ IREAANEREAR AR R R OO ey v . DRI -

EXHIBIT 12: Comparison of local density and high-order algorithms at t=3.2 and 3.7.

TOTAL MINORITIES
high-order local density
t=3.7* ta32%* (=1.7%%% (=324
Median | 23h 34h 20 28
uHinge 38 47 31 38
Max 43 59 47 51
(Mean) | 277 38.2 26 275

* Actual total minorities: 17,18,19,21,22,25,36,38,38,43

** Actual total minorities: 22,31,31,34,34,35,41,47,48,59
*** Actual total minorities: 7,11,16,17,19,21,25,31,32,47
**%* Actual total minorities: 12,12,16,19,25,31,32,38,39,51

Note: For "h" see note to Exhibit 4.

‘ ") o LR R L R T IS R R N SRt Ju N WS AV RDRY R RN R R
AR Y A A) N L VI P e 2 0 00) S TR S AR Ty Ay

. ..f .-_-~~f .'"

R R ATE

s s

’-
‘

"){-\.’5 .v;.l”ﬂv._"-" .

gk Is SUPR WL
ot L

LS A J

-

s ® 4‘.’

AR

“y ¢
‘7]

LSRN
o _‘,".-‘/ L

SN

-

@ P S

“»

oK

)

WM W LN LN X ANAN AR U AP, MU A WY N Y N o *ad St “plaale"Rbe pho HU. Sg AV * 804 0.4'a0 00 R0

(=0]
© ®
s
¢ Pr—
o -
]

O -

19 .

)

< | | | l |

EXHIBIT 13: Core point vines for t = 3.7. The core points were identified
using the local density algorithm. Note that the clusters are centered appropri-
ately, yet branch outwards, bringing foreign points into two of the clusters.
This solution gave 32 total minorities.

- S . o rp , e S
W h R ' ‘,' < n. L CRLN '- \"\’-.-y. \ ALl x-."-._'. whe _\\",\"-."'\"\’-,"u R '-':ﬂ‘- A S ~."' O ASA

Ay
REywE

Q" ‘1:.»

t“i' (ﬁ'

-y

",

L' 4
-

ERAr

»

N -w v g -
YRS ;
o K

™~

el
s A

7

» s
Iy
P

’
b

x4

%y

® e

o

~y
7

T

s

) .‘.s'»‘

’

-
- a

-
)

-

1)
o
de R

— . . . N o bg® AR ol e Y
caena At B . $2°2% a0 0,5t o fa gt tet ke 1 e Seb tut % » 9 4a Sl a0t a'd) AT AN W X - VN LW A

- -

- -

8
O N

3
T Ty & =

v 5 S

CT

EXHIBIT 14: The triangle formed by the three centers of gravity for the data of Exhibit <
13. The perpendicular bisectors, as drawn, separate the three output clusters. The number ‘;.
of minorities has been reduced by well over one-half, to twelve. S ’
.I
.!

o

-

.

- imaw <
\'f_‘-’\'f\-r\'f\-"l‘._\-r\f\-‘ \

A LV P S R g S o T Ve DL TR) N Y N S e B T W
N N Y R L 0 e N 2 Rt v A L v

BT PLIT LY TUI PO T ST B ST PO YU TR T P 1K o 3 et et JaC ga® fat BaY aut ot Sa¥ St N30 Rat pat Ayt dus pet _ .l Ao’ B2t yat 4, gt T v ."!

- - W W W W W, W, W, W

EXHIBIT 15: Minority counts for the basic biscetor polish and iterated bisector polish algorithms for A
t=2.9. Note that performance is better than that of the first core cluster tachniques at t=3.2, as summarized
in Exhibit 12. e

TOTAL MINORITIES (t = 2.9) A

high-order local density
basic® iterated** basic*** iterated*s**
15h 18 p7) 20 i~
N
uHinge | 28 21 25 22 t'-
60 59 59 60

(Mean) 24.5 22 259 24.1 o

I
* Actual total minorities: 16,17,18,19,19,20,20,28,28,60 :"0:.:
*+ Actual total minorities: 15,15,15,18,18,18,18,21,25,59
#*+ Actual total minorities: 18,19,19,20,22,22,24,25,31,59 "
*se+ Actual total minorities: 16,17,18,19,20,20,21,22,28,60

Note: For "h" see note to Exhibit 4,

4
-P.. ’.l‘

D
(4

Pty

oA

[

S

5 £ s
4 5

Yy

g

ey M

» ${'5(.'(

. . . ~ N ~ e NIRRT T AT a8 UL B Tty T o I T A L e e P AL L L
T A A g A L g N B A AT R T TSR T AN kel e A AN A ST NN NS

- gt PRI T P
2 i 248 525 BaV 02" 82”00 IR" obR ¥ oty abd at « ¥ b’ $.0 000 §,4°0.8 %o Suf ‘gt 2 g8 4, W\ WIS AN WY Y Y e >,

+
H

EXHIBIT 16: Results obtained when the bisector polish algorithm is applied using the (non-observed) o)
population centers of gravity at t=2.9, i
[;

TOTAL MINORITIES (t = 2.9)

population bisectors e\
"~

19
) uHinge 20
25

SR

(Mean) 18.8

Actual total minorities: 14,16,17,18,19,19,19,20,21,25

Sl T L

"%

e,

- AR R N I I ISR T s SO - o e e e T T T T T T T T T Y T Ty e
5 2.'.:-_..0 ™ : ‘,V.\. 0 \J"./x- P A o ~_4:.‘.--“.»__...3:._ LN KOS R R L R S A
ol A i) Rt o oY s f) G 2 » N .. ,

A% 3, ‘e ded et

P]
Al‘

M AT RSN

. o
D
Yy .

‘l»

rrr
.
" %

UPTCLLLEL IO

5%

- —.-is

- A

ALY

Ly

L
v
v »

n‘ﬁf\(';‘.'l "

N

]

>

a

BN

RSV K VN WA U U LW U LN U LA LW LS LAt o AR A A A LRl A0 044, 07 b 06 AU A YL SR gy 0 bl il e 0% i iuin o Bato gt et I Sa® Bl LR Bk 2o ¥ 3 A ¢
it
)

i,
it

RN EXHIBIT 17: Comparative performance for t = 2.7.

" TOTAL MINORITIES (t = 2.7)

N : current* average-linkage** complete-linkage®*** :

kA Median 25h 47h 35
: uHinge 33 65 39
o Max 73 97 56

o (Mean) 29.7 S1.1 360 - ;

* Actual total minorities: 16,18,20,23,25,26,29,33,34,73
) ** Actual total minorities: 22,23,24,25,35,60,64,65,96,97
S *+* Actual total minorities: 23,24,26,33,34,36,38,39,51,56
¥ *+*+ Already for t = 4.5, single-linkage gave a median number misclassified
-y of 98.

Note: For "h" see note to Exhibit 4.

Craint

U - 3 9
R ¢

9y . : . |
vy I'd PN A VLY RS RL L PO PR Rt ROy G P LTS S L L S OSSR T
W -,. Yo »\' PR e e T e N R T N e e T NN A N N e N N S e e

EXHIBIT 18: Minority counts for iterated bisector polish algorithms with S-dimensional data.

L X B

TOTAL MINORITIES

73

3 t=32 t=2.9 t=2.7

igh-order* local dens** high-order*** local dens**** high-order***** local dens******
2

WS

Median 18h 20 2 42h 26
uHinge 2 29 24 46 42
68 61 41 61 62

(Mean) 239 283 239 421 325

46h
56
62 %

;. .
4s.1 N
[]

! * Actual total minorities: 11,11,14,15,18,19,19,22,42,68

! ** Actual total minorities: 13,17,17,18,19,21,27,29,61,61

‘ *** Actual total minorities: 19,19,19,21,21,23,23,24,29,41
*+++ Actual total minorities: 24,29,31,40,41,44,45,46,60,61

; *++++ Actual total minorities: 19,21,21,25,26,26,38,42,45,62
s+++ Actual total minorities: 19,29,37,45,45,48,50,56,60,62

Note: For "h" see note to Exhibit 4.

-t R TN A \-~-\-

LSRR
4) RN
A.’d'..‘ OO A W " U A D) A

\

-« a®L® " TRIA RIS (Tt (LT,

e -'.'-’"’?'" o """'. <)

e

.
a s

T

e ’, ."-.'

SET NN, RO, Ml

'3
»

. o 3
NN T AN

.
Y

;g"&l.‘.liu’

WLy 3 TR RN P SOR NP TP W €9 408 39" 8 6.0 0 8 FaB O Ve < p Vol tal eal R TN PTR OV VoY Y TVEV oY YAy A N R AN

O .

A EXHIBIT 19: Results for iterated bisector algorithms with unequal variance test beds.

v TOTAL MINORITIES

B . high-order local density
o A=3® Ae27%* Aa3es Au27%ese

Median | 13 17h 14 18h
e uHinge | 17 21 16 24
Max 22 61 53 61

) (Mean) | 139 25.1 179 228

W * Actual total minorities: 7,11,11,11,12,14,16,17,18,22

gk ** Actual total minorities: 10,14,16,16,17,18,20,21,58,61
#s* Actual total minorities: 8,11,12,12,13,15,15,16,24,53
#s+* Actual total minorities: 12,14,15,16,17,20,22,24,27,61

Note: For "h" see note to Exhibit 4.

)
'*\--q------_----“--‘--w-~-n--.\-v~_-v-\._~‘\ﬁ1\
, }‘_) o .r,‘. AN Qe GO ot ..‘,:r_..r,_ ‘.r dn, N, Tt \qr -i

v

e L A
KIS OO S NNV

._;q|>\~"t‘l‘0"' Ly g PR Calh vl tal lat, ol Tt Gal Vol ¢2 00 Culh Sl 0y y Sind Sk oA U K MM ME R iR % mta s At a g W W Wy g N W e (A 0 2a0 0% Dyt d L8

N EXHIBIT 20: Results from using maximum likelihood and the population bisectors to classify the
unequal variance data. The maximum likelihood method used the population means and variances; the
o bisector method used only the means.

e TOTAL MINORITIES

max, likelihood pop. bisectors
A=3* A=27%¢ AL LL2.Teee

KX Median | 12h 16 13 17
R uHinge | 15 19 15 18
L Max 18 23 22 24

™ (Mean) | 12.6 164 13.5 16.6

e * Acwual total minorities: 8,9,10,11,12,13,13,15,17,18

- ** Actual total minorities: 10,13,14,14,16,16,17,19,22,23

+ Actual total minorities: 7,9,11,11,12,14,14,15,2C,22 ,
#*++ Actual total minorities: 10,12,15,16,17,17,18,18,19,24

Note: For "h" see note to Exhibit 4,

) ¢ SRAAAANE

™

PZ7A LI,

W R Ny
' FLILTES P,
o

e
-'l';{'.\ﬁa

r o

- g
L& LA A

-
LI TR U N I S P PG O AP P IS JEE R TN I VL e RIS R RO
Ny MW .\, -. - l. S \-‘$ \. \.,‘\'\._ ...\'|,..-_ ~ \“- 'I‘I\"' X \fl' '\ . "J‘ >

T AN I
| . A

AT AP e L T n s,
LTIV, 99,8, 09.09.0°V PN

-10

10

[} “ o
.)
Ly o
), wor o %o ’
N5
3
M
1:~ o (]
g v L 1 1 1 ! 1 1 4
s 6 4 2 0 2 4 6 8 10 :
.l
e EXHIBIT 21: Two “typical” realizations of the unequal-shape test beds. The upper
"': panel was generated with t=3.2 and gave 30 total minorities with both of the iterated
W bisector algorithms. The lower panel (1=3.7) gave 9 twotal minorities with the local
nt density and iterated bisector algorithm and 11 total mincrities with the high-order and
R iterated bisector algarithm. 1
) !

W, o - S N EULRLE - a st
B R O M S R S Ra v e M WA NN

EXHIBIT 22: Total minorities for the iterated bisector algorithms with the unequal-shape test beds.

TOTAL MINORITIES

high-order local density
t=3.7% =32%" (=3.7%%* (=32%0es

13 31 10h 30
uHinge 24 M 17 33
Max 34 50 27 50

(Mean) 158 29.3 132 294

* Acual total minorities: 2,7,7,11,11,15,17,24,30,34

** Actual total minorities: 10,14,22,30,30,32,34,34,37,50
*** Actual total minorities: 6,8,9,9,9,12,16,17,19,27

**++ Actual total minorities: 13,16,25,28,30,30,32,33,37,50

Note: For "h" see note to Exhibit 4.

!v

" o

. St e - - e JAEY Sy L N T L P e o 6 S e L I AT L AT VL Ve P - wma W W W
MWICs _If:) .r PP TRTS .,-\ S~ ',p::.-::-':.l o ("n.‘ .I‘\.r..-,h;-_'l'.:.f' - P e " N I\-\' RO Y, NN > Ny

.
Y

APPENDIX - Code for Algorithms
(by Katherine M. Hansen)

All the clustering programs are written in the "C" language. We provide

code for all the high-order and local density core-point algorithms below. The
printout is divided into 6 files, formatted as follows:

1)

2)

3)

1)

2)

3)

4)

5)

"defs.c" (2 pages)
This file contains all of the type definitions and variable declarations
required by the programs.

"hiormain.c” (1 page) - basic high-order algorithm
"densmain.c” (1 page) - basic local density algorithm

"hoibmain.c” (1 page) - high-order and (basic & iterated)
bisector algorithms

"ldibmain.c" (1 page) - local density and (basic & iterated)
bisector algorithms

These are the main modules for each of the 4 core-point programs.
"modules.c” (10 pages)

This file contains the modules (functions) called by the main modules.
To run one of the algorithms on a particular data set, the user should:

Copy the data into the file "datfile”. Each line of the file should contain

exactly one entry. The first entry should be the first variable for the first
data point. The second entry is the second variable, first data point, etc.
The last line of "datfile” should be the last variable of the last data point.

Edit the first 8 lines of "defs.c”, so that NROW, NCOL, NCLUST,
NCORE, and NN are set appropriately. (For the high-order algorithms,
NCORE and NN may be set arbitrarily.)

In order, join the files "defs.c”, the desired main module, and "modules.c".
On a UNIX operating system, the command would be, for example:

cat defs.c hiormain.c modules.c > hiorder.c

The required source code is now held in the file "hiorder.c".

Compile the source code, to generate an executable file. On a UNIX
system, the appropriate command would be:

cc hiorder.c -lm

The executable code would be contained in a file a.out.

Run the executable program. The classifications will be placed in a file
called "countfile”. Additional information may be placed in other files, as
follows:

Al

Y ™ ‘Y e s 7Y “w - - - - - .. » » - - - -
or R AR AR

e ' B% F% FS PR TN e Nl % % " e e’
"'.'A'-"u‘- EACA U0 0l sl iy ix A W A YA A ARG A Y

(g

T L WS

2

o R SRR PRI A

-

-

.

-
»aw, '
AR

Rk

'.' ™ - N YA A #ag S0 B8 Ual i 0o kd neh G .3 (]} (] 4 d ‘el - . L " - ®,

RS0, W "R a0 R o DTy o e Y

B

X

]

K0 .

bt "edgefile” (all 4 programs). Information on the NROW-1 edges of the
“.\.'. complete spanning vine. The 2 endpoints, minrank, maxrank,

" criterion, and minsize of each edge are placed in the file.

W "corefile" (all 4 programs). Information on the NCORE-NCLUST
* edges of the core point vines. For each edge the 6 values just

fs described above are placed in the file.

! "noncorefile” (hior and dens). Information on the NROW-numcore
o edges linking non-core points to core point vines. For each edge, the
; 6 values described above are placed in the file.

s "gravfile” (hoib and Idib). Coordinates of the (iterated) centers of
. gravity of the core point clusters. Each row of the file contains the
o coordinates of the core center.

by

n

c:“

i

4

o

[)

S

¥

4

%

Wy

Y

»
A

;),
'\

K¢

~

HI

o

~.

L

i

L4

‘J

v

u':

by

kD)

)
.

.‘:

- A2 .
“ 1
:‘ "

8 ¥ ' - T S T O e Y N I NP T A S P8 LTI S Gt AR R Ay o
‘ll..'c.:‘{“.’l.‘.'i"o. o' A-'i.:'l.n'!.u " u.n X ! ‘n".!"‘l.lh.. A A Vo Nt A A W ’y) f‘ A ARSI IS,

T . N % atd a't VRN AR L R R ALY, af *of Sot ool ol al. ‘el 8ha" md_cal. " D

=
. R
/* defs.c
type and variable definitions for "C" programs */ i,
include <stdio.h> _:.
include <math.h> .
#define NROW 150 /* number of data points */ i~
#define NCOL 2 /* dimension of data */ N
#define NCLUST 3 /* number of clusters desired */ -
#define NCORE 50 /* number core points desired, for density algorithms */ :
#define NN 10 /* neighbor used to determine density */ *:
#define MAXINCLUDE 15)
/* MAXINCLUDE is number of nearest neighbors of each point to keep as A
candidate edges; using MAXINCLUDE = 15 will save run-time, but -:
for large data sets with well-defined clusters, MAXINCLUDE may
need to be increased */
#define LENGTH (NROW*MAXINCLUDE)/2 -
typedef double DATA{NCOL]; R’
ot
typedef struct { R
double distto;]
int ptnum; A
} DIST, DISTANCES[NROW]:;
typedef struct ({)
int num; byt
DISTANCES dat; X
} DISTMAT; -

typedef struct {
int ptnum;
DATA coord;

Rl 4

} POINT; 2
o
typedef struct { -
int start; .
int end; 4
int minrank; ,
int birankplus; /* birank + 5; used in all calcs needing birank */ Ky
double sq_dist; -
int minsize; o
double criterion; St
} EDGESTRUCT; /* structure of candidate edges */)
typedef struct {
int lowc: -~
DATA coord; .
} GRAVCENT; "
typedef struct { /* cluster status of each point */ tﬂ
int lowc; /* lowest numberes point contained in same cluster */ o
int sizec; /* number of points in cluster */ !
int order:; /* order of point, after preliminary run */ .~
int corept:; /* indicates whether or not a core point */ o
} CLUSTINFO; T,
Y
typedef struct (ﬂ:
int ptnum; Yo
double dist; .
} DENSINFO; 3
A
FILE *datfp, /* input file */ o
*countfp, *corefp, *edgefp, *gravfp, *noncorefp, /* output files */ AT
*fopen() ; W
int locmaxct, numcore, truesize, “
connection [NROW] [NROW], locmax{NROW], ;
»
E:Z
2,
vl

A3

P S J‘.'J_.-'_--:_.-‘ \.:__.:\ .-,;-:\'-r.;.\:f

» - ". '.- <
‘o.“l."! . s ,l;.‘.l " A .

Nt W

PRI N A 47 O
L L L] .)

AR S LG

. Cearap s
AR N
A .

" ~

ot At gAY g 0% 0a 4a® et pa % e 96 et Bat .0 00t 0 0 0.0 0 3, 0% 0' gta ot g% . B B) vl talt

rankdat [NROW] [NROW], newrankdat [NROW] [NROW],
logdens_sort (), sort_rows();

.l‘: double logvect [NROW], logdens[NROW], log():

Wy CLUSTINFO lowest (NROW];

/) DENSINFO densdist [NROW];

¥ DISTMAT distdat (NROW], newdistdat [NROW];

¢ EDGESTRUCT edgedat [LENGTH], newedgedat [LENGTH];
te GRAVCENT center [NCLUST], newcent [NCLUST]:

POINT pointdat [NROW], newptdat [NROW];

o “4“:’ L"uA:

L=

L%

A0

) Ad _
ti 3 .
' .

Q'. -

P 1% W 2 B Ml LS I S S A% D% I VL N R N R o ' Py ST AL T AT N I AT A A ORI
Ot ol Catar A O T T T Ly S e On b T, St ' vl Q-I.t ot N, W -l" v

[
bR

0.0 0g% 1% Bt dat Dt gav bat da' gt (X ’ ja*oia® > A Jy o TS " _Sa®. 8a" Ba" y

5y’ ot 3
&
&
/* hiormain.c \
main module for hiorder algorithm */ ‘ A
Y
! main () .
' 0,
o 1
1 datfp = fopen("datfile", "r");
countfp = fopen("countfile","w"):;

corefp = fopen("corefile","w"); .

N .

X edgefp = fopen("edgefile","™w"); I

A noncorefp = fopen("noncorefile","w");)
initialize_data structures(); X

N reset_lowest (1) ;

R find_dists(pointdat, distdat, NROW);

first_sort (distdat, rankdat, NROW);
load_edgemat (distdat, rankdat, edgedat, &truesize, NROW, pointdat);
grow_vine (0, edgedat, truesize, NROW-1);
', find_hiorder_points (&numcore);
reset lowest (0);
find_dists (newptdat, newdistdat, numcore);
first_sort (newdistdat, newrankdat, numcore);
load_edgemat (newdistdat, newrankdat, newedgedat, &truesize, numcore, newptdat);
grow_vine(l, newedgedat, truesize, numcore-NCLUST);
: load _noncore_edgemat (&truesize);
grow_vine (2, edgedat, truesize, NROW-numcore);
) print_classification():
}

XL G IRRR)

AT T

Sy

AR P indd P
- A L

R A AN Y

T e

"
> s

;S
.

] T

A5

of

“ % Y

P P T A R S e N S e S N R S e A S O N . IR N A AP AN '{' Wt A K
'f'n".’.‘.u‘!‘ttn\ e ". p N AT A O N S A N A N T TS RS AR S A

. .8 6 A ha €. 0 . . TN
..‘!'t'!'- 388 R0 Tt o fat i e 50" ath ¥ e 2’y Pu W W 40000 g0 ‘ol g fato Syl et NN W W Y S YN G LY Bl A B
\)

/* densmain.c

A main module for the local density algorithm */
. 3
main () .
Nt)
b
N { .
U
W datfp = fopen("datfile","r");
countfp = fopen("countfile™,"w"); ;
AX corefp = fopen("corefile","w");
I edgefp = fopen("edgefile”,"w");
W noncorefp = fopen("noncorefile","w"); !

T

initialize_data_structures():
reset_lowest (1)
find_dists(pointdat, distdat, NROW);
first_sort(distdat, rankdat, NROW):
load_edgemat (distdat, rankdat, edgedat, &truesize, NROW, pointdat);
N reset _matrix(connection):
) grow_vine (0, edgedat, truesize, NROW-1);
smooth_densities(); =

p find_local_maxes(&locmaxct): .
I find hi_dens_points();

gsort ((char *) densdist, NROW, sizeof (DENSINFO), logdens_sort);
. make_newptdat (&numcore) ; A
W reset_lowest (0);
; find_dists(newptdat, newdistdat, numcore):;

first_sort (newdistdat, newrankdat, numcore);

w load _edgemat (newdistdat, newrankdat, newedgedat, &truesize, numcore, newptdat): ﬁ
v reset_matrix(connection):; .-
grow_vine(l, newedgedat, truesize, numcore-NCLUST) ;
% load_noncore_edgemat (&truesize):
b grow_vine (2, edgedat, truesize, NROW-numcore):;
v print_classification();
+of 3
} 1

I :
e

»
‘ t
N *d
S o
) -
* -
" A
. ,
; 3
" Y
) .
193 ™
A Y,
] Y
'
.! .
> .
: |
’I 1
! .
¥ 3
D .
l “
'l [y
.l [N
; ;

t
W ¢
' !
d .
M y

A6 2

SRR COARERAY
»

'\ " --_':-

» PP - ‘ AT Y S
VR O L G G AR G A S e A

AR ENA N CARLS
. L3

-'_‘-d:"'-\..\..\f'-{\f'\",-'. "
A Coalh at, ot

“w

O af

/* hoibmain.c
main module for the hiorder and bisector and
hiorder and iterated bisector algorithms */

main ()
{

datfp = fopen("datfile", "r");

countfp = fopen("countfile","w");

corefp = fopen("corefile","w"):

edgefp = fopen("edgefile”,"w");

gravfp = fopen("gravfile”,”w”};

initialize_data_ structures();

reset_lowest (1);

find dists(pointdat, distdat, NROW):

first_sort (distdat, rankdat, NROW);

load_edgemat (distdat, rankdat, edgedat, &truesize, NROW, pointdat);
grow_vine (0, edgedat, truesize, NROW-1);

find _hiorder_points(&numcore):;

reset_lowest (0):

find_dists(newptdat, newdistdat, numcore);

first sort (newdistdat, newrankdat, numcore):;
load_Edgemat(newdistdat, newrankdat, newedgedat, &truesize, numcore, newptdat):
grow_vine(l, newedgedat, truesize, numcore~NCLUST);
reset_centers (center);

find gravity_centers();

gravity center_classify(center);
print_classification():

reset centers(newcent);

find iterated_grav_centers():

gravity center_classify(newcent);
print_classification();

}

T T
v, ".-\"""'\f\-'\"\" o

N
Ll

oW et

P 8. A%
AR

-
<

Al

| PRI
Pl P

s

t

R

LA P
Il .

-

% % Y

I

IR

BT

. NN

“yte s
P
LRRY

P e
.
AT

R AT b

A 4
,s h]

’7,

P i S g
LA

PR 4
H N

)

: /* ldibmain.c
main module for local density and bisector and
local density and iterated bisector algorithms */

main/{()

{

datfp = fopen("datfile"™, "r");
countfp = fopen("countfile”, "
corefp = fopen("corefile"
edgefp = fopen("edgefile",
gravfp = fopen("gravfile”, "w"
initialize_data_ structures():
reset lowest (1);
find_dists(pointdat, distdat, NROW);
first _sort (distdat, rankdat, NROW);

load edgemat(dlstdat, rankdat, edgedat,
reset_matrix(connection):

grow_v1ne(0, edgedat, truesize, NROW-1);
smooth_densities();
find_local_maxes (&locmaxct);
find_hi_dens_points();

gsort ({char *) densdist, NROW,
make newptdat (&numcore) ;
reset_lowest (0);
find_dists(newptdat, newdistdat, numcore):

first sort(newdistdat, newrankdat, numcore);

load_edgemat (newdistdat, newrankdat, newedgedat, &truesize, numcore, newptdat) ;
reset_mratrix(connection);
grow_v1ne(l, newedgedat,
reset centers(center);
find grav1ty centers();
grav1ty center_classify(center);
print_classification():

reset _centers (newcent) ; /* iterating bisectors */
find_ Tterated |_grav_centers():;

gravxty center claSSLfy(newcent),
prlnt_claSSLflcatlon(),

}

&truesize, NROW, pointdat):

sizeof (DENSINFO), logdens_sort);

truesize, numcore-NCLUST):;

A8

- Ay \ N NN ~ N .\ LR \ A ST \,-. '_\:.‘-'_'\',‘-'.\'_‘.'.'.' oo " , ‘. J- g ,1- P .’-v, .‘.' J' J'\
“'nn‘, I' d ..- Parnne ity 2 p L oy A A atal

E TR R L

L% = N

LY S R |

4
,
’
o

8 S0 Sy

N

e e -

- 5
~F W,V

4, A AT ST S R 3 I A ST AP AT I A AN LR LT A
IR R e o S e e i e

o llst oMYy gua” e SRR Pal b A b T e TN UNANE AN LN K R R X q *gh ead. wr Tophe U SpL

/* modules.c
modules of "C" code used in each of the clustering programs */

initialize data_structures()
/* initializes pointdat and logvect structures */

{

int row,col;

for (row = 0; row < NROW; row++) {
pointdat [row] .ptnum = row;
for (col = 0; col < NCOL; col++)
(void) fscanf (datfp,"%f", &pointdat[row] .coord(coll);

}
logvect [0] = 1;
for (row = 1; row < NROW; row++)

logvect [row] = log({(double)row) + 1;
}

reset_lowest (reset_core)
/* resets the lowest vector */

int reset_core;
{

int row:;

if (reset_core == 1) /* first run; set all points as non-core */
for (row = 0; row < NROW; row++) {
lowest (row] .lowc = row;
lowest [row].sizec = 1;
lowest [row] .order = 0;
lowest [row] .corept = 0;

}
/* second run; leave core points indicated as such */
else for (row = 0; row < NROW; row++) {
lowest [row] .lowc = row;
lowest {row] .sizec = 1;
lowest [row] .order = 0;

}

find dists(pointmat, distmat, size)
/* finds euclidean distance from each point to each other */

POINT pointmat [NROW];
DISTMAT distmat [NROW];
int size;

{

int row,col,k;

double tempdist;

for (row = 0; row < size; row++) ({
for (col = row ; col < size; col++)
if (row == ccl) {
distmat (row] .dat [col] .distto = 0;
distmat [row] .dat [col) .ptnum = row;
}
else (
tempdist = 0;
for (k = 0; k < NCOL; k++)
tempdist = tempdist + (pointmat[row].coord[k] -
pointmat (col] .coord(k]) * (pointmat [row] .coord (k] -
pointmat (col] .coord(k]);
distmat [row] .dat (col] .distto = tempdist:

A9

LS. T LT S DR PO TS NI S L VA A »
vt .".}r_',_ . Y .\. XA \ a

n s

Pr -2

“z W

M -'t,—'.‘x ".'."-‘I‘ TIV":

L0 2 T s g g)
- L4

. m g
Pead

T AN

B T,

5 5 G A

Y

1‘-'! .'\ BRARLAN B Lad A 1 L) »

distmat [row] .dat (col] .ptnum = col;

distmat (col].dat{row] .distto = distmat [row].dat[col].distto;
distmat [col] .dat [row] .ptnum = row;

}

distmat {row] .num = row;

}

first sort(distmat, rankmat, size)
/* sorts each row of distance matrix */

DISTMAT distmat [NROW]:;
int rankmat {[NROW] (NROW];
int size;

{

int col, row, temp;

for (row = 0; row < size; row++) {
gsort ((char *)distmat (row].dat,size,sizeof (DIST),sort_rows);
for (col = 1; col < size; col++) |
temp = distmat [row].dat[col] .ptnum;
rankmat [row] {(temp] = col;

}

load_edgemat (distmat, rankmat, edgemat, truesize, size, pointmat)
/* creates the matrix of candidate edges; includes all edges
with minrank < MAXINCLUDE */

DISTMAT distmat [NROW];

int *truesize, rankmat [NROW] [NROW], size:;
EDGESTRUCT edgemat [LENGTH];

POINT pointmat [NROW];

{

int row, col, 1i:

i=0;
for (row = 0; row < size; row++)
for (col = row + 1; col < size; col++)
if (rankmat [row] [col]<MAXINCLUDE| |rankmat [col] [row]<MAXINCLUDE) {
edgemat (i] .start = pointmat [row].ptnum;
edgemat [i] .end = pointmat [col].ptnum;
if (rankmat[row] [col] < rankmat[col][row])} {
edgemat (i] .minrank = rankmat [row] (col];
edgemat {i] .birankplus = rankmat{col] [row] + 5;
}
else {
edgemat [i] .minrank = rankmat [col] [row];
edgemat [i] .birankplus = rankmat[row][col] + 5:
}
edgemat {i].sq _dist = distmat[row].dat[rankmat (row] (col]]) .distto;
edgemat [i] .minsize = 1;
edgemat (i] .criterion = (edgemat(i].birankplus);
i=13i4+1;
}
*truesize = i;

}

reset_matrix(mat)
/* may be used with either checked or connection matricies */

int mat [NROW] [NROW] ;

A10

oo, Tudlipdy

%y

LN ¢
D
ave,

R

A A LA o R Ay T N S S S S
ohe 50409, 79 .50, F % 3 X o B {2 . g

SN A A \'_\'J,\‘_'.:.\"‘.;,-,' Yy \‘"p.;,-.:,\. *w

-

YN SN
S I A
PSENNCNENT oy

1
J@

.
»

T
o

l‘ l'. l. \

PR g

.

o L
5 P

Pl
b, 2, %%

Jl
’

‘o.Q;Q] "‘ ‘0""'| '*(.'n‘."‘_' N o ol ‘0! (XX PR YR 2,08 0) tup Vol S el Sol taB ‘tad S,

I‘h
"’
{
int i, 3: i
U
for (i = 0; i < NROW; i++) !
¢ for (3 = 0; 3 < i; 3+4) { A
mat [1] [j] = O: Yt
mat [j] (1] = O; k'

}

-
AR T

grow_vine(type, edgemat, truesize, numlinks)

/* finds the edges which are to be added to vine; the variable "type"
indicates whether preliminary vine (type = 0), core point vine
(type = 1), or final vine (type = 2) */

> w
-

EDGESTRUCT edgemat [LENGTH] ;
int truesize, type, numlinks;

<5

int numedges, numleft, newc, newsize; 2}
L]

numleft = truesize;
numedges = 0;

while (numedges < numlinks) { "
min_£first (edgemat, numleft); h
add_edge (type, edgemat[0], &newc, &newsize); 'd
update_criterion(edgemat, &numleft, newc, newsize): ¢

numedges = numedges + 1; £
} |

Ky
nmin_first (edgemat, numleft) :;
/* places edge with lowest criterion value in first position of edgemat */ N

2

EDGESTRUCT edgemat [LENGTH]; o
int numleft; 4

{

int row, temprow; ;

EDGESTRUCT tempedge; ;‘

\

temprow = 0; :

for (row = 1; row < numleft; row++) :

if (edgemat[row].criterion < edgemat[temprow].criterion) Y
temprow = row; !

else if ((edgemat|row].criterion == edgemat [temprow].criterion)&s& ﬁ;

(edgemat [row] .sq_dist < edgemat [temprow].sq dist)) o

temprow = row; =N
tempedge = edgemat (0]; 7
edgemat (0] = edgemat [temprow]:; -
edgemat (temprow] = tempedge; b
} i

update_criterion(edgemat, numleft, newc, newsize)
/* updates the "criterion” of each candidate edge after a new addition
to the vine; deletes all circuit-forming edges. */

LT LA S

EDGESTRUCT edgemat [NROW];
int *numleft, newc, newsize;

{
int pos, tempint;

for (pos = 0; pos < *numleft; pos++) |
if ((lowest[edgemat [pos].start].lowc == lowest [edgemat (pos].end].lowc)) {

P LE] T NS T

<~

A1l

~w

'
i A |) j LN VRS N ;. LR 35 U A i Y v
O S O T N I TP TR TN P M T P T ™ b ™ P i PSR R 2 e 20 L0 Lot e 2RI ""“* s

v Ay ., K [B

. ¥ad et tatahtart e Ve AR 4" R N N P W R MR RS RIIRE TN ¥ T P o * A R AT T AN A) e L

for (tempint = pos; tempint < *numleft; tempint++)
edgemat [tempint]=edgemat (tempint + 1]; :

) *numleft = *numleft - 1;

pos = pos - 1;

0 else if (lowest[edgemat[pos].start].lowc == newc) { {
Dy if (lowest [edgemat [pos].end].sizec > newsize)

edgemat [pos] .minsize = newsize;
else edgemat [pos].minsize = lowest [edgemat [pos].end].sizec;

) edgemat [pos] .criterion = 3
iy (edgemat [pos] .birankplus) * (logvect [edgemat [pos] .minsize]) ; i,
I.Q)
&' else if (lowest[edgemat [pos].end].lowec == newc) { :
D if (lowest [edgemat (pos].start].sizec > newsize) ‘
Y edgemat [pos] .minsize = newsize:

else edgemat [pos].minsize = lowest [edgemat [pos].start].sizec;
Iy edgemat [pos) .criterion =
}, (edgemat (pos] .birankplus) *(logvect [edgemat [pos]).minsize]): 1
u ! !
" }
2 }

add_edge (type, edge, newc, newsize)
/* adds edges to vine, writes them in order in appropriate file */

-

EDGESTRUCT edge; ' V¢
int type, *newc, *newsize;)
(. M
int col, tempint;

Py Y

. if (type == 0)

il fprintf (edgefp, "$5d $5d %5d %5d %f %5d\n",edge.start, edge.end, edge.minrank,
edge.birankplus - 5, edge.criterion, edge.minsize);

] else if (type == 1) {

i fprintf (corefp, "%5d $5d %¥5d %5d $%f %$5d\n",edge.start, edge.end, edge.minrank,

edge.birankplus - 5, edge.criterion, edge.minsize);

fflush(corefp):;

}

- R

PP

else
fprintf (noncorefp,"$5d $5d %5d %5d %f %5d\n",edge.start, edge.end,
edge .minrank, edge.birankplus - 5, edge.criterion, edge.minsize):
lowest [edge.start] .order += 1;
% lowest [edge.end] .order += 1;
: connection[edge.start] (edge.end] 1; \
connection[edge.end] [edge.start] = 1; ;
if (lowest[edge.start].lowc < lowest[edge.end].lowc) { ot
*newc = lowest [edge.start].lowc:;
*newsize = (lowest[edge.start).sizec + lowest (edge.end].sizec);
tempint = lowest [edge.end].lowc;
for (col = 0; col < NROW; col++)
if (lowest([col].lowc == tempint) ({
lowest [col] .lowc = *newc; :
lowest [col] .sizec = *newsize;

S LA

1]
-

b i N

) else if (lowest[col].lowc == *newc) b
lowest [col] .sizec = *newsize; it
-

else if (lowest[edge.start].lowc > lowest[edge.end].lowc) {
F *newc = lowest [edge.end].lowc;
' *newsize = (lowest [edge.start].sizec + lowest(edge.end].sizec); !
tempint = lowest [edge.start].lowc;
for (col = 0; col < NROW; col++)
if (lowest[col].lowc == tempint) {
lowest [col] .lowc = *newc;
lowest [col) .sizec = *newsize;

N NI
T W B T
-}

oA AL AA L

‘.
(]

A12

M a -
-

A R R T S D R S SR i

=%
o~

ARG ER VARG

w else if (lowest[col).lowc == *newc)
oY lowest [col] .sizec = *newsize;
o) }
iy
o smooth_densities ()
. /* smoothes densities on the vine structure */
.“;
s {
t
15 int ptnum, col, tempct, changed;
é?f double newlogdens[NROW], tempdens[10}, ors2;
Y
N for (ptnum = 0; ptnum < NROW; ptnum++)
logdens [ptnum] = -2*(log(distdat [ptnum].dat [NN].distto)):
o changed = 1;
e while (changed == 1) {
0 changed = 0;
a for (ptnum = 0; ptnum < NROW; ptnum++)
fﬂ if (lowest[ptnum).order == 1)
b newlogdens{ptnum] = logdens[ptnum];
else {
- tempdens (0] = logdens{ptnum];
4" tempct = 1;
né for (col = 0; col < NROW; col++)
Yy if (tempct <= lowest [ptnum].order)
by
Y if (connection{ptnum]{col] == 1) {
ﬁ tempdens {tempct] = logdens(col}:
- tempct += 1;
- }
‘ﬂi find_orstat2(tempdens, &ors2, tempct);
;: newlogdens [ptnum] = ors2;
. }
Qt for (ptnum = 0; ptnum < NROW; ptnum++) {
"W, if (logdens[ptnum] != newlogdens[ptnum])
- changed = 1;
K logdens [ptnum] = newlogdens [ptnum];
. }
}
N }
.'l
!ﬂ findTorstatZ(tempdens, ors2, order)
: /* finds second-highest element of tempdens */
-
aﬁ double tempdens(10], *ors2;
;;. int order;
0 {
"k int row, maxpos, pos2;
»
- maxpos = 0;
K for (row = 1; row < order; rowt+)
Q if (tempdens[row] > tempdens[maxpos])
‘o maxpos = IOW;
?: if (maxpos == 0)
44 pos2 = 1;
: else pos2 = 0;
- for (row = 0; row < order; row++)
~ if ((tempdens[row] > tempdens{pos2]) && (row != maxpos))
Y pos2 = row;
h *ors2 = tempdens|[pos2];
v }
o
: find_local_maxes {locmaxct)
i
o
"
.';‘
"y
.ﬂ
o A13

0 » W GO, Y TR Y R T W W) (W™
Sl yed Tttt B Ot T T l'-'i"l"i" RN ACANA o.l"!'l AN UL, '?vf?o‘-. o

1‘%. I N OGO O G S L T L W a s ate aba el “ag tap,t 8 ol Sut Gp San A v vy

"'—V.

‘e : XN R '8, R R RN T RO TR 09 Oaf Bl 2 $al Geh &8 N Sl 0ol Lol TR

::. [l Ve T NS TN TR [e - - - - - 1) ‘
‘ \ t
.\“ \
b /* identifies the local maxima on the vine */

g: ?nt *locmaxct;

(]
f& int row, col, maxpos;

U

]
g for (row = 0; row < NROW; row++) { .
4 Mmaxpos = row;

for (col = 0; col < NROW; col++)
A if (connection{row] [col] == 1)
‘o] if (logdens([col] > logdens|[row]) \
o maxpos = col;)
x, if (maxpos == row) | a
i locmax([*locmaxct] = row; d
W *locmaxct += 1;
}

) }
i }
134 \
» 1
3 find hi_dens_points()
" /* computes local density of each point */

{
int row, col, max, checked[NROW] [NROW]:;

N

-

for (row = 0; row < NROW; row++) { !
densdist [row] .ptnum = row;
densdist (row] .dist = 0;
}

2 for (row = 0; row < locmaxct; row++) {

D! reset_matrix(checked);

max = locmax(row]:;

for (col = 0; col < NROW; col++)
if (connection{max] [col] == 1) { 4

checked[max] [col] = 1; ;

P s
e

-
- e

3 checked[col] [max] = 1;

= follow_branch(max, max, col, checked); \
~ } A
X~ })
] \‘) !
B> U
Fa,

) follow_branch(curmax, ptl, pt2, checked) =

/* recursive procedure for moving about vine structure */

“'

) int curmax, ptl, pt2, checked[NROW] [NROW];

§ {

y int num, conpts(NROW], tempct;

o double diff;

W

tempct = 0;
: if (logdens[pt2] <= logdens(ptl]) (
‘ diff = logdens[curmax] - logdens[pt2]:
if (diff > densdist([pt2].dist)

- A

- densdist [pt2].dist = diff;
2 for (num = 0; num < NROW? num++) '
o if ((connection[pt2]) (num] == 1) && (checked([pt2] [num] == 0)) {

checked{pt2] ([num] = 1;
checked[num] [pt2] = 1;

;‘ conpts([tempct] = num; 3
. tempct += 1; D
L } d
: for (num = 0; num < tempct; num++) k

L/, follow_branch(curmax, pt2, conpts[num], checked): .
89) .

e Al4 o
"'\ (

- . + |
'f -* X -' ¢) l'Aa'v -' -~ .'~ 2

e

A ! 0 ¥ Wyt o LA NN AN L L A Y,
' ‘.“,'q'\,lh‘.'s.«'a‘.'u..“ M .‘Q‘.'l‘fb.n‘\‘..‘l,.“.u AP !c“!u“..".l“.l‘ Xa X LA AN AN R) () < L ALl

(L) ' g

R T N U TN AR RS - gy W W M 52 582" al, 5.4 3% 484, AR N 4 r 8.

logdens_sort (densl,dens2)
/* sort function for gsort */

DENSINFO *densl, *dens2;
{

if ((*densl) .dist < (*dens2) .dist)
return{-1);

else if ((*densl).dist > (*dens2) .dist)
return(l);

else return(0):;

}

make_newptdat (numcore)
/* makes new data matrix, containing only core points */

int *numcore;

{

int row:;

for (row = 0; row < NCORE; row++) {
newptdat [row] = pointdat{densdist[row] .ptnum];
lowest [densdist [row] .ptnum] .corept = 1;
}

row = NCORE-1;

*numcore = NCORE;

while (densdist{row].dist == densdist [NCORE].dist) {
lowest [densdist (row] .ptnum] .corept = 0;
row -= 1;
*numcore -= 1;

fprintf (countfp, "numcore = %d\n", *numcore);

}

find_gravity centers()
/* finds gravity center of each core-point cluster */

{

int row, col, dim, num;

num = 0;
for (row = 0; row < NROW; row++)
if ((lowest({row].lowc == row) && (lowest([row].corept == 1)
for (col = 0; col < NROW; col++)
if (lowest[col].lowc == row)
for (dim = 0; dim < NCOL; dim++)

Y

center (num] .coord(dim] = center[num].coord[dim] +
pointdat [col] .coord(dim];

for (dim = 0; dim < NCOL; dim++)

center [num] .coord[dim] =center (num] .coord[dim])/lowest [row] .sizec;

center [num)] .lowc = row;
num += 1;

]
fprintf (countfp,"Initial classification:\n");
}

gravity center_classify(cent)
/* classifies points based on nearest center of gravity */

GRAVCENT cent [NCLUST];

A15

‘ A D) ¢ o, TV LI Lt e -r_-(‘.‘{\.-‘.-t\.- Co) Y
rndagdediele l-'.lq., el ’ .l‘."'.' DI S ol ARSI e

R

ORI

ey

o

NI I

\J‘

.

L5

., .-
%54 T 055

e s

g

&_‘ 5:.". o LYY

\9

S e d

T
»

e

o i

Yy
»

&

~ata W, BT
“‘.,\I-{ s

Yy '.l{‘, :
-

RO

o -
L FRLEEE

DN

W
{ N
int row, mink, col, k: »
. double tempmin, tempdist: :
¥ .
¢ for (row = 0; row < NROW; row++) { .
| mink = 0; by
1} tempmin = 0.0; 5
v} for (col = 0; col < NCOL; col++)

tempmin = tempmin + (pointdat[row].coord([col] -
cent (0] .coord(col]) *(pointdat (row] .coord(col] -
. cent {0] .coord([col]):
for (k = 1; k < NCLUST; k++) {
tempdist = 0.0;
! for (col = 0; col < NCOL; col++)
: tempdist = tempdist + (pointdat[row].coord[col] -
cent [k] .coord[col]) * (pointdat [row] .coord[col] -

vy

, cent [k) .coord(col]); -3
¥ if (tempdist < tempmin) { N
tempmin = tempdist; .
mink = k; ~
} N
lowest [row] .lowc = cent[mink].lowc;
\ } "
) !)
i) ’
i "
: find iterated_grav_centers() :
' /* finds iterated centers of gravity */ &)
{ e
int row, ceol, dim, count; -
)] -
b for (row = 0; row < NCLUST; row++) { ;
newcent [row] .lowc = center{row].lowc; N,
count = (; ¢
% for (col = 0; col < NROW; col++)
if (lowest{col).lowc == center[row].lowc) (b
" count += 1;
. for (dim = 0; dim < NCOL; dim++) <
> newcent [row] .coord[dim] = newcent [row].coord[dim] + :
N pointdat [col] .coord(dim]; o,
D, } !
for (col = 0; col < NCOL; col++) \
newcent [row] .coord{col] = newcent[row] .coord[col]/count; x
K for (col = 0; col < NCOL; col++) A
f fprintf (gravfp, "$f ",newcent [row].coord(col}); I,
: fprintf (graveip, "\n"); ')
¢ } :
J) fprintf (countfp, "\n"); 3
N fprintf (countfp, "Classification after iteration:\n"):;
* }
b, reset_centers (cent) &
: /* re-initializes center structure; used on both center and newcent */ :
g GRAVCENT cent [NCLUST] ; N
b {
: int row,col; 3
* Y
! for (row = 0; row < NCLUST; row++) "
s for (col = 0; col < NCOL; col++) -
cent (row] .coord[col] = 0; e
v } ?'
; ra
) I
i ol
¢ p
')
. |
X A16 ;
r
< g - ~ o P P X ™ WA D,
f‘-'?‘.".‘ﬂ?' h AN RDOOOGTNIR A o'!'l'. l'.'u' 0‘. WSO, n‘. 9, %0, o’o l‘., L, v, D‘-‘l’ Lhy ';. .I oy .. A ! I !',.I » Wiy 0‘4'0, . \ 'F - "\ v

AR

L

find_hiorder_points(numcore)
/* designates points of order > 2 as core points */

int *numcore:
{

int row, tempnum;

S AP

tempnum = 0;
for (row = 0; row < NROW; row++)
if (lowest[row] .order > 2) {

newptdat [tempnum] = pointdat(row];
lowest [row)] .corept = 1;
tempnum += 1;
}

*numcore = tempnum;

}

s l'-l'_‘.’

o

sort_rows (distl,dist2)
/* sort function for gsort */

DIST *distl, *dist2;
{

if ((*distl) .distto > (*dist2) .distto)
return(l) ;

else if ((*distl) .distto < (*dist2) .distto)
return(-1);

else return (0);

}

el PPN,

b A

load_noncore_edgemat (truesize)
/* creates the matrix of candidate edges for non-core points */

int *truesize;

{

int row,col,i:

i=0;
for (row = 0; row < NROW; row++)
for (col = row + 1; col < NROW; col++)
if (((lowest(col].corept != 1) || (lowest[row].corept != 1))&&
((rankdat [row]) [col] < MAXINCLUDE) ||
(rankdat {col] [row] < MAXINCLUDE))) {
edgedat (i) .start = row;
edgedat [i] .end = col;
if (rankdat[row] {col] < rankdat[col] [row]) {
edgedat [i] .minrank = rankdat([row] [col];
edgedat [i] .birankplus = rankdat[col] [row] + 5;
}

else {
edgedat [i] .minrank = rankdat{col] [row];
edgedat {i] .birankplus = rankdat [row] [col] + S;
}
edgedat [i] .sq_dist =
distdat [row] .dat [rankdat [row] [col])] .distto:
edgedat[i] .minsize = 1;
if (((lowest[col]l.sizec == l)&&(lowest[row].sizec == 1))&s&
((lowest [col) .corept != 1)&&(lowest([row].corept != 1)))
edgedat [(i] .criterion = NROW + 6;
/* above prevents links between two single noncore points */
else edgedat(i).criterion = edgedat|[i].birankplus:
i=1i+1;
}

Al7

b 1 Q W OO B T T S T T L A L A A A e e AR AR LA AN AN e
"h"S.n",’l'f‘l',‘n’.sﬂ!'ﬂ!.t*?’u"'\l’.'.‘. PNt MO J!‘c. LV, %0 .'! o8 SN, 0 S N YN AW NN BTN e " J

\ s A A8
)
}

*truesize = i;

}
; print*classification()
; /* prints classification results in file "countfile" */
" {

int row;
. for (row = 0; row < NROW; row++)
3 fprintf (countfp, "point # %d in cluster %d\n", row,
t fprintf (countfp, "\n");
' }
[}
'
4
'
:
b
.
\
)
¥
)
P
]
)
)

Al18

‘.n".'v‘l‘n. s RO O UL 190 oWy N it

lowest [row] .lowc) ;

o«

-

R S N R R AR TR

i I gy i]

“¥

!'."l".'.'

(.."\l..-,a"frlf '

™
[J

.o~

-
“ %

e Ys e v

e

P
.4

] ‘."’ -J.' -{ -’ n.'.-V-"

»
Chaac®

e

S

‘b{‘r 'i"\— o ';-_'-,x; '_.r."‘{-("-"-‘.-l

s

g 3 A I Sl ORI ' TS LA PR L U L L oo T m a0y 8™ € T Ca W W,
N YO \ l-.‘h. hd ahatth AT RSHE AT SE N \-'ﬁ\‘\ AP T RAAT AT D)

A e
:, i ’).'\::
e '
T
]
N
NG
0y ¥y,
%
A
\ ¢
M

A B
. ,..,l. '\ .\‘:-’:ﬂ. ’\ .‘l"
' R 5

. ~ %
s e

P
R ’\:s
)

b
o
Y

-

